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Abstract

A new set of Double-Differential FRaGmentation (DDFRG) models for pro-
ton and light ion production from high energy nucleus-nucleus collisions, rel-
evant to space radiation, is introduced. The proton model employs thermal
production from the projectile, central fireball and target sources, as well as
quasi-elastic direct knockout production. The light ion model uses a hybrid
coalescence model. The data show a prominent quasi-elastic peak at small an-
gles which becomes highly suppressed at large angles. The models are able to
describe this wide range of experimental data with only a limited set of model
parameters. Closed-form analytic formulas for double-differential energy and
angle cross-sections as well as single-differential spectral cross-sections are de-
veloped. These analytic formulas enable highly efficient computation for space
radiation transport codes.

1 Introduction

Recent work [1, 2] has shown that neutrons and light ions1 provide the dominant contribu-
tion to space radiation dose equivalent for realistic spacecraft shielding of about 20 g/cm2

or more. However, comparisons between radiation transport codes [3, 4] and measured
data [5] have shown that light ion production represents the largest physics uncertainty
in space radiation studies.

Light ions are scattered at both small and large angles, and therefore, double-differential
cross-sections for light ion production need to be used as input into three-dimensional
transport codes [6, 7, 8, 9, 10], which run most efficiently if simple model cross-section
parameterizations are available. Such parameterizations were recently developed [11, 12]
and compared very well to experimental cross-section data [13, 14]. However, the exper-
imental data that were used for model comparisons only included light ions scattered at
relatively large angles ≥ 10◦, as measured in the laboratory frame. It has been noted
that neutron [15] and light ion [16] production cross-sections behave quite differently at
very small angles near 0◦, displaying a well pronounced quasi-elastic peak at the beam
rapidity.

The present work seeks to extend the previously developed models [11, 12] so that
they compare well to cross-section data measured at all angles. It will turn out that the
most challenging task is to extend the models to account for the quasi-elastic peak at the
beam rapidity.

1Light ions are defined to be isotopes of Hydrogen (H) and Helium (He); ions heavier than He are
called heavy ions. The proton (1H) is a simple light ion. The most important composite light ions are
the deuteron (2H ≡ d), triton (3H ≡ t), helion (3He ≡ h), and alpha (4He ≡ α). Throughout the text,
the term light ion will refer to composite light ion, unless otherwise noted.

1



1.1 Review of previously developed models

The main features of the previously developed models [12] were the following:

1. Comparisons of double-differential cross-section data between proton production
and light ion production showed that the light ion data were very well represented
by scaling the proton data, assuming that light ions are produced via coalescence.
These comparisons were done only using experimental proton data versus light ion
data; there was no theoretical model used in comparing the proton data to the light
ion data, except for a simple scaling of proton data as

EA
d3σA
dp3

A

= CA

(
Ep
d3σp

dp3
p

)A
, with pA ≡ App and EA ≡ AEp, (1)

where Ep d
3σp/dp

3
p are experimental data2 for the Lorentz-invariant double-differential

cross-section for proton production, and EA
d3σA
dp3

A
are experimental data for the

Lorentz-invariant double-differential cross-section for light ion production of mass
number A. Also, E and p ≡ |p| are the energy and 3-momentum magnitude of
the emitted fragment, and p3 is the momentum volume element [12]. CA is the
coalescence model coefficient.

2. The empirical relation between proton and light ion data observed in equation (1)
implies that it is not necessary to develop a separate theoretical model for light
ion production. One only requires a model for proton production. If that proton
model compares well to data, then Item 1 implies that the scaled proton model will
automatically compare well to light ion data. In other words, the light ion model is
obtained simply by scaling the proton model, and this works for all composite light
ions. A separate light ion model is not required.

3. However, the light ion model is not obtained without some effort. To demonstrate
scaling of the experimental data, one typically uses a fitted coalescence coefficient,
CA for each light ion. Therefore, in order to develop a fully predictive model, this
coefficient must be calculated with a theoretical model developed separately [12].

4. The only requirement is an accurate proton model: A thermal proton production
model was developed [12], with protons being produced from 3 separate sources of
projectile, target and central fireball. The thermal model for each source is

Ep
d3σp

dp3
p

= N e−Tp/Θ, (2)

2There are no models or fits to data used here. Only experimental data are used.
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where Tp is the kinetic energy of the emitted proton3, Θ is the source temperature
and N is a constant. Adding contributions from the 3 sources, Lorentz transform-
ing to the laboratory frame, and inserting the relation between N and the total
proton production cross-section σp, gives a single formula for the complete proton
production cross-section,

Ep
d3σp

dp3
p

(ppL, θpL) =

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
P

+

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
C

+

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
T

= N3

{
exp[(mp − γPL

√
p2

pL +m2
p + γPL βPL ppL cos θpL)/ΘP ]

}
+ exp[(mp − γCL

√
p2

pL +m2
p + γCL βCL ppL cos θpL)/ΘC]{

+ exp[(mp − γT L
√
p2

pL +m2
p + γT L βT L ppL cos θpL)/ΘT ]

}
,

(3)

with

N3 ≡
σp

4πmp

[
ΘP e

mp
ΘP K1

(
mp

ΘP

)
+ ΘC e

mp
ΘC K1

(
mp

ΘC

)
+ ΘT e

mp
ΘT K1

(
mp

ΘT

)]−1

. (4)

In the above equations, ppL and θpL are the momentum and angle of the proton
(p) in the lab frame, L. The proton mass is mp. The notation (ppL, θpL) indicates
that the functions must be written as explicit functions of the lab frame L variables
ppL and θpL because these are the variables used for the experimental cross-sections,
with which the thermal model is to be compared. The projectile, target and central
fireball frames are denoted with the symbols P , T , C respectively. The speed of
the projectile frame relative to the lab frame is βPL, and the relativistic γ factor
is related to the speed via γ = 1/

√
1− β2. Similar nomenclature is used for the

target and central fireball frames. The projectile, target and central fireball source
temperatures are denoted as ΘP ,ΘT ,ΘC. Also, K1

(
mp

Θ

)
is the modified Bessel

function of the second kind [18] of order 1 as a function of mp

Θ
.

3The model of equation (2) is the thermal model evaluated in the frame being considered, namely
projectile, fireball or target. Therefore, Tp is the kinetic energy of the proton in that frame. The
temperatures can also be different in each frame. Each of the 3 expressions for the cross-section is
Lorentz-transformed to the lab (target) frame and added together to compare to lab data.
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5. The light ion model is simply obtained upon insertion of equation (3) into the right
hand side of equation (1), as in4

EA
d3σA
dp3

A

= CA

{[
Ep
d3σp

dp3
p

(ppL, θpL)

]
P

+

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
C

}
{

+

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
T

}A
= CAN

A
3

{
exp[−(γPL

√
p2

pL +m2
p − γPL βPL ppL cos θpL −mp)/ΘP ]

}
+ exp[−(γCL

√
p2

pL +m2
p − γCL βCL ppL cos θpL −mp)/ΘC]{

+ exp[−(γT L
√
p2

pL +m2
p − γT L βT L ppL cos θpL −mp)/ΘT ]

}A
.

(5)

1.2 Display of Anderson et al. [16] small angle data

Most of the double-differential cross-section data obtained by Anderson et al. [16] gives
particle production as a function of transverse momentum instead of the more intuitive
angle variable. The reason for this is because transverse momentum is Lorentz invariant,
whereas angle is not. The use of transverse momentum presents significant complications
when trying to analyze and compare theoretical models written in terms of angle, and
a major effort was undertaken to transform the transverse momentum variables to angle
variables, as discussed in the Appendix of Section 7. Even though it is simple to produce
transverse momentum variables from theoretical models [12], the use of angle variables is
much more intuitive and gives much better insight into the behavior of both the data and
the models, at least as far as space radiation applications are concerned.

Transverse momentum, p⊥, is defined as p⊥ ≡ p sin θ, where p is the total momentum.
Inverting gives θ = arcsin(p⊥/p), which is a double-valued function in the range 0◦ - 180◦.
If p is fixed, then θ has two values (forward and backward) for a single value of p⊥. With p
varying, then a single value of transverse momentum contains a variety of different angles.
For example, a single transverse momentum value might contain all the angles 1◦, 1.4◦,
1.6◦, 1.7◦, 1.8◦, 2.0◦, 2.3◦, 2.4◦, 2.5◦, 2.7◦, 3.0◦, 3.2◦, 3.5◦, 3.8◦, etc. However, one wishes
to plot cross-sections as a function of angle, for all particles produced at 1◦ and at 2◦ and
3◦ and 4◦, etc. The way this is done in the present work is as follows: Data labeled 1◦ will
actually include, for example, 1◦, 1.4◦, 1.6◦, 1.7◦, 1.8◦. Data labeled 2◦ will include 2.0◦,

4The physical interpretation of raising the proton cross-section to the power A is as follows: As with
the previous model [11, 12], the complete proton cross-section is raised to the power A, and so there will
be coalescence contributions coming not only from the various different sources, but also from “cross”
terms. Consider, for example, deuteron (i.e. bound state of a proton and neutron) coalescence formation.
Both the proton and neutron can come from the same central fireball source, for example. But due to the
cross terms, a proton could come from the central fireball and coalesce with a neutron from the projectile.
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2.3◦, 2.4◦, 2.5◦, 2.7◦. Data labeled 3◦ will include 3.0◦, 3.2◦, 3.5◦, 3.8◦, etc. This is an
accurate representation, because variation of the data over one degree ranges is negligible.

Strictly speaking, it is not correct to convert the p⊥ data of Anderson et al. [16] to
angle. This is because, for a fixed value of p, there are two values of angle for each single
value of p⊥, as mentioned above. However, the Anderson et al. [16] data is restricted to
small values of p⊥, corresponding to small angle values in the range 0◦ - 10◦. Therefore,
the second corresponding backward angles are 170◦ - 180◦, and the Lorentz-invariant
double-differential cross-sections at these backward angles are so small as to be negligible,
for the range of p values reported by Anderson et al. [16]. Therefore, it is a very good
approximation to convert the p⊥ data of Anderson et al. [16] to angle, because only small
forward angles make significant contributions to the cross-sections.

2 Coalescence scaling of small angle data

The key to the success of the previously developed light ion model was due to the fact
that the light ion data could be very well reproduced simply by scaling proton data. This
meant that one only needed to develop a single proton model: The light ion model was
obtained simply by scaling the proton model, in the same way as the data scaled. Data
analyzed previously was limited to large angles. The key question is the following: Do
the proton and light ion data also exhibit simple scaling at small angles? The answer will
turn out to depend on the type of projectile.

Figures 1 - 7 (reproduced from reference [12]) show proton (blue) and light ion (black)
production cross-section data [13, 14] for large angles. The proton data is scaled according
to equation (1) and shown as the red points. As discussed previously [12], one can see
the remarkable results of the coalescence idea; the scaled proton data (red) lies directly
on top of the experimental light ion data (black).

The overlap of scaled proton data (red) on top of light ion data (black) seems mirac-
ulous. The blue proton curves move to the right (becoming the red curves) comes about
because of the definitions in equation (1), namely that pA ≡ App and EA ≡ AEp. But
this is really only a choice of units. In Figures 1 - 7, the light ion momentum pA is in
units of GeV; because those are units in which data were originally given [13, 16].

Units of GeV/n are preferred, because they clearly show the similarity of the behavior
of the light ion and proton data. Later when examining the quasi-elastic peaks, it will be
seen that the peak of the light ion data is far removed from the proton peak using GeV
units. However, with GeV/n units, both peaks will lie on top of each other leading to much
better physical insight important for model development. Therefore, the experimental
proton and light ion data and also the scaled proton data from Figures 1 - 7 are re-
plotted using units of GeV/n and are shown in Figures 8 - 14. The units of the vertical
axes have also been modified to include GeV/n. Of course, the comparison of the scaled
proton data with the light ion data are just as accurate as before, but now, with GeV/n
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units, the scaling behavior seems less miraculous because one observes that the shapes
of the proton and light ion data are similar and certainly have similar high momentum
fall-offs. Scaling the proton data by a single coalescence coefficient (and raising to a
power) to reproduce light ion data now seems more obvious. However, the use of a single
coalescence coefficient to describe all angles of a given light ion5 remains remarkable.

The data [13, 14] discussed so far has been for relatively large angles ≥ 10◦. Now
examine the small angle data of Anderson et al. [16], which is plotted in Figures 15 - 17,
with units of GeV and in Figures 18 - 20, with units of GeV/n. For the moment, just
focus on the proton (blue) and light ion (black) data and ignore the scaled data (red).
The most obvious new feature of the data is the appearance of a large peak, especially at
the smallest angles. As the angle gets larger the shape of the Anderson et al. data [16]
becomes similar in shape to the Nagamiya data [13, 14]. Another obvious feature shown
in Figures 18 - 20, is that in units of GeV/n, the light ion and proton data have a peak at
the same momentum per nucleon. The small angle data has also been scaled according to
the coalescence scaling of equation (1). The scaled data appear as red points in Figures
15 - 20. It can be seen that coalescence scaling fails for small angles!

All data discussed so far has involved heavy ion projectiles producing light ions. An-
derson et al. [16] have also measured light ion fragments from light ion projectiles at the
very smallest angle of 0◦. However, 4He was the only light ion projectile used, but, for-
tunately this is the most important composite light ion projectile [17] for space radiation
applications. The data are shown in Figure 21 in units of GeV, and in Figure 22 in units
of GeV/n. Again, a large peak is observed at 0◦, with both the light ion and proton data
showing the peak at the same momentum per nucleon. However, this time for light ion
projectiles, coalescence scaling works again!

The small angle Anderson data [16] that shows failure of coalescence scaling is shown
as a function of angle in Figures 15 - 20. However, as mentioned in Section 1.2, the data
were measured as a function of transverse momentum, and not angle. This will alter the
conclusions about the failure of coalescence scaling, and this is verified in Figures 23 - 25,
which are shown as a function of transverse momentum, instead of angle, in units of GeV,
and in Figures 26 - 28 in units of GeV/n. The α + C reactions shown in Figures 21 - 22
are at an angle of 0◦ corresponding exactly to a single value p⊥ ≡ p sin θ = 0, regardless
of the value of p, and thereby not requiring separate transverse momentum plots.

In summary, the small angle data [16] display the following four new features:

1. A large peak appears at the smallest angles.

2. The light ion and proton data have a peak at the same momentum per nucleon.

3. Coalescence scaling fails for small angle fragments with heavy ion projectiles.

4. Coalescence scaling is valid for small angle fragments with light ion projectiles.

5Each light ion has a different coefficient, which remains constant, independent of angle.
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The previously developed thermal/coalescence model [11, 12] included a 3-source ther-
mal proton production model, which was then scaled according to coalescence to give the
light ion model. The thermal/coalescence model described the large angle data [13, 14]
very well. There are major difficulties in extending the previous model to the small angle
data set. Firstly, the 3-source thermal proton model cannot describe the quasi-elastic
peak observed at small angles. Secondly, even if the 3-source thermal proton model could
describe the peak, the model still cannot be scaled with coalescence, because the data, as
seen in Figures 15 - 20 and 23 - 28, show that coalescence scaling fails at small angles.
Thirdly, even if one could somehow devise a successful light ion model, which does not
rely on coalescence scaling, the model would fail for light ion projectiles, because coales-
cence scaling reverts to being mysteriously valid for light ion projectiles producing small
angle fragments. A major effort is required to extend the previous model [12] to describe
both small and large angle data for both light and heavy projectiles. The new model
must be capable of describing the four new small angle features discussed above, as well
as re-produce the previous [11, 12] successful description of the large angle data. That is
the subject of the present work.

3 New Models

What is the origin of the new peak seen at small angles, and how does one develop an
appropriate model to describe it? Figures 18 - 20 and 22, plotted in units of GeV/n give
the main clue. It can be seen that all the light ion peaks occur at the same lab momentum
per nucleon, and the value of that lab momentum per nucleon is the same as the proton
peak. The Einstein relations are

E ≡ T +m = γm, (6)

and

E2 ≡ p2 +m2, (7)

where E is the total energy, T is the kinetic energy, and m is the mass. A convention
in the present work is p ≡ |p|. Units are chosen with the speed of light c ≡ 1; this
standard convention is used throughout this paper. A projectile kinetic energy T = 1.05
GeV/n, gives a lab momentum of p = 1.75 GeV/n, which is precisely the location of all
the peaks in Figures 18 - 20 and 22. Therefore, the small angle peaks must be due to
fragments knocked directly out of the projectile. An elastic process is one in which the
projectile undergoes no interactions and continues on with its original kinetic energy after
the reaction6. The direct knockout of fragments with the same7 kinetic energy as the

6This assumes that no energy is transferred to the target, or equivalently represents the limit of an
infinitely massive target. In reality, some energy can be transferred.

7Again assume no energy transfer to the target.
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original projectile is called quasi-elastic. Figures 18 - 20 and 22 show that the small angle
peaks are due to quasi-elastic direct knockout. This is in contrast to the large angle data,
where the fragments arise from a hot thermal source which decays after reaching thermal
equilibrium. As discussed previously, there are 3 thermal sources, namely a source in
the projectile, a source in the target and a much hotter fireball source near the center of
momentum.

3.1 New proton thermal plus direct knockout model

3.1.1 Maxwellian versus Gaussian distribution

The general form of a Gaussian distribution, also often called a Normal distribution, is

f(x) =
1

σ̃
√

2π
e−(x−ν)2/2σ̃2

, (8)

where x is the variable value, f(x) is the probability distribution function, σ̃ is the stan-
dard deviation of x, and ν is the mean value of x. In terms of a momentum distribution
p, where p is the magnitude of the 3-momentum p ≡ |p|, with an average value ν = 0,
the distribution is [19, 20, 21]

fG(p) =
1

σ̃
√

2π
e−p

2/2σ̃2

. (9)

The relativistic kinetic energy can be expanded as a power series in the momentum,

T =
p2

2m
(1− p2

4m2
j

+ · · ·) (10)

with the first term corresponding to the non-relativstic approximation

TNR ≈
p2

2m
. (11)

The thermal Maxwellian distribution is

fM(p) = Ne−T/Θ, (12)

with normalization constant N , and temperature Θ. Comparison of equations (9) and
(12) shows that a Gaussian (Normal) distribution is equivalent to a Maxwell distribution
in the non-relativistic approximation. The Maxwell temperature is trivially related to
the Gaussian distribution width, or standard deviation, σ̃. One often sees Gaussian dis-
tributions [19, 20, 21, 22] used for the momentum distributions of fragments, including
direct knockout of neutrons [15, 22], and Maxwell distributions [13, 22] used for thermal
decay of hot sources, but because these descriptions are equivalent at the non-relativistic
level, either formalism can be used. Therefore, the present work will use thermal Maxwell
distributions for all fragment production including both thermal sources and direct knock-
out sources. The temperature used for the direct knockout source can be regarded as an
“effective” temperature.
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3.1.2 Thermal plus direct knockout proton model

A new thermal plus direct knockout model for proton production is now developed in
direct analogy to the previously developed model of reference [12]. The new model also
uses some of the methods developed to describe neutron production cross-sections [15, 22,
23, 24, 25, 26], where a total of 4 sources were used corresponding to 3 thermal sources of
projectile, target and fireball and an additional source due to direct (D) knockout from
the projectile. Cross-sections for protons from the 4 sources are added together as

Ep
d3σp

dp3
p

(ppL, θpL) =

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
P

+

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
C

+

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
T

+ w
(p)
D

[
Ep
d3σp

dp3
p

(ppL, θpL)

]
D

= N4 [e−TpPL/ΘP + e−TpCL/ΘC + e−TpT L/ΘT + w
(p)
D e−TpPL/ΘD ], (13)

where P , C, T , D symbols representing projectile, central fireball, target, and direct
knockout respectively, and w

(p)
D is the direct knockout weighting value listed in Table 1.

The kinetic energy of the proton in the projectile frame relative to the lab frame is denoted
as TpPL, and similarly for the other frames. Note that TpPL also appears in the direct
term because it originates from the projectile. Following the methods of reference [12]
and inserting Lorentz transformations gives

Ep
d3σp

dp3
p

(ppL, θpL) = N4

{
exp[(mp − γPL

√
p2

pL +m2
p + γPL βPL ppL cos θpL)/ΘP ]

}
+ exp[(mp − γCL

√
p2

pL +m2
p + γCL βCL ppL cos θpL)/ΘC]

+ exp[(mp − γT L
√
p2

pL +m2
p + γT L βT L ppL cos θpL)/ΘT ]{

+ w
(p)
D exp[(mp − γPL

√
p2

pL +m2
p + γPL βPL ppL cos θpL)/ΘD]

}
.

(14)

In terms of the projectile kinetic energy, TPL, the relativistic factors are

γPL = 1 +
TPL
mn

, γCL =

√
1 +

TPL
2mn

, γT L = 1, β =

√
1− 1

γ2
. (15)

Equation (14) represents the thermal plus direct knockout model with contributions from
the projectile, target and central sources, all Lorentz-transformed to the lab frame.

The normalization coefficientN4 is obtained from the requirement that the total proton
production cross-section σp is the fully integrated differential cross-section. Using the
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methods of reference [12], the new normalization becomes

N4 =
σp

4πmp

[
ΘP e

mp
ΘP K1

(
mp

ΘP

)
+ ΘC e

mp
ΘC K1

(
mp

ΘC

) ]
[

+ ΘT e
mp
ΘT K1

(
mp

ΘT

)
+ w

(p)
D ΘD e

mp
ΘD K1

(
mp

ΘD

)]−1

. (16)

Equations (14) and (16) represent the final 4-source thermal proton model in terms of lab
variables, and correctly normalized so that the integral of the Lorentz-invariant differential
cross-section gives the total cross-section.

3.2 New light ion hybrid coalescence model

The results of Section 2 clearly showed that fragment cross-sections produced at small
angles for heavy projectiles do not obey the simple scaling behavior as predicted in the co-
alescence model. Nevertheless, a hybrid scaling model can still be developed. Auble et al.
[27] were among the first to show that fragment cross-sections could be described by mul-
tiple sources, although they considered only the two fireball and projectile sources. They
also used scaling, but weighted each contribution to scaling differently, which required the
use of more adjustable parameters. Neutron production work [15, 22, 23, 24, 25, 26], also
made use of different adjustable parameter weight factors for each source.

3.2.1 (ppL, θpL) variables

The new hybrid scaling model is (with pA ≡ App and EA ≡ AEp)

EA
d3σA
dp3

A

= CA

{
wP

[
E
d3σ

dp3
(ppL, θpL)

]
P

+ wC

[
E
d3σ

dp3
(ppL, θpL)

]
C

}
{

+wT

[
E
d3σ

dp3
(ppL, θpL)

]
T

+ wD

[
E
d3σ

dp3
(ppL, θpL)

]
D

}A
, (17)

This equation is very similar to the coalescence scaling model in equations (1) and (5),
except that now adjustable weighting factors w are used for all sources. This is why it
is called a hybrid coalescence model. Substituting equation (14) into (17) gives the final
result for the light ion hybrid scaling model in terms of (ppL, θpL) variables

EA
d3σA
dp3

A

= CAN
A
4

{
wP exp[(mp − γPL

√
p2

pL +m2
p + γPL βPL ppL cos θpL)/ΘP ]

}
+ wC exp[(mp − γCL

√
p2

pL +m2
p + γCL βCL ppL cos θpL)/ΘC]

+ wT exp[(mp − γT L
√
p2

pL +m2
p + γT L βT L ppL cos θpL)/ΘT ]{

+ wDw
(p)
D exp[(mp − γPL

√
p2

pL +m2
p + γPL βPL ppL cos θpL)/ΘD]

}A
. (18)
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3.2.2 (ppL, p
⊥
pL) variables

As discussed in the Appendix, the transverse momentum, p⊥pL, is a double valued function
of angle θpL: Two different angles correspond to the same value of transverse momentum.
One angle is in the forward (+) direction and the other is in the backward (−) direction.
Let ∗ be an arbitrary reference frame (either projectile, target, fireball). The proton
cross-sections in the ∗ frame are added incoherently,

E
d3σ∗p
dp3

(ppL, p
⊥
pL) = E

d3σ+
∗p

dp3
(ppL, p

⊥
pL) + E

d3σ−∗p
dp3

(ppL, p
⊥
pL), (19)

to form the complete cross-section corresponding a specific value of p⊥pL.
Equation (17) contains cross terms, so that coalesced light ions can receive contribu-

tions, for example, not only from a single reference frame, but also different reference
frames. For example, a deuteron can be formed from two nucleons both originating in
the projectile, but also can be formed from a nucleon in the projectile coalescing with a
nucleon from the target. This makes sense physically. However, it does not make sense to
allow for cross terms from the forward and backward directions. Define the double valued
light ion cross-section

EA
d3σ±A
dp3

A

(ppL, p
⊥
pL) ≡ CA

{
wP

[
E
d3σ±

dp3
(ppL, p

⊥
pL)

]
P

+ wC

[
E
d3σ±

dp3
(ppL, p

⊥
pL)

]
C

}
{

+wT

[
E
d3σ±

dp3
(ppL, p

⊥
pL)

]
T

+ wD

[
E
d3σ±

dp3
(ppL, p

⊥
pL)

]
D

}A
,

(20)

to give the light ion transverse momentum cross-section

EA
d3σA
dp3

A

(ppL, p
⊥
pL) = EA

d3σ+
A

dp3
A

(ppL, p
⊥
pL) + EA

d3σ−A
dp3

A

(ppL, p
⊥
pL)

= CA

{
wP

[
E
d3σ+

dp3
(ppL, p

⊥
pL)

]
P

+ wC

[
E
d3σ+

dp3
(ppL, p

⊥
pL)

]
C

}
{

+wT

[
E
d3σ+

dp3
(ppL, p

⊥
pL)

]
T

+ wD

[
E
d3σ+

dp3
(ppL, p

⊥
pL)

]
D

}A

+ CA

{
wP

[
E
d3σ−

dp3
(ppL, p

⊥
pL)

]
P

+ wC

[
E
d3σ−

dp3
(ppL, p

⊥
pL)

]
C

}
{

+wT

[
E
d3σ−

dp3
(ppL, p

⊥
pL)

]
T

+ wD

[
E
d3σ−

dp3
(ppL, p

⊥
pL)

]
D

}A
,

(21)

which contains no unphysical cross terms relating forward and backward angles.
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3.3 Verification

A variety of verification tests were undertaken to ensure that the computer codes and
mathematical formulas were correct. These tests are listed below.

• Computer codes were originally written in Mathematica. Independent codes were
also written in FORTRAN and both codes were verified to be giving the same results.

• As described perviously, all differential cross-sections were written in terms of two
independent sets of variables, namely momentum and angle, (p, θ), and also mo-
mentum and transverse momentum, (p, p⊥). Given that p⊥ ≡ p cos θ, values of θ
can be chosen and the corresponding value of p⊥ can be calculated. Because E d3σ

dp3

is Lorentz invariant, the values should be the same in the different variable sets,
and this was verified for a variety of cases. These tests also verified that the double
valued cross-section functions introduced for transverse momentum variables (see
Appendix) were correct.

• As described previously, there are three different reference frames used to implement
the theoretical models, namely projectile, central fireball, and target (lab) frames.
The thermal and coalescence models are calculated in each frame and then Lorentz-
transformed to the lab frame in which experimental measurements are available
and in which transport codes are evaluated. The differential cross-sections, E d3σ

dp3 ,

are Lorentz-invariant, but d2σ
dEdΩ

and dσ
dE

are not Lorentz-invariant. How is one to
check that the complicated set of Lorentz-transformations to the lab frame have
been done correctly? This includes the complications of the two variable sets above.
The most powerful test is to fully integrate all differential cross-sections over en-
ergy and angle to obtain the total cross-section σ, which is Lorentz-invariant. All
the various differential cross-sections should give the same answer σ when they
are integrated. Extensive verification tests were done, giving high confidence that
all Lorentz-transformations and resulting formulas for differential cross-sections, in-
cluding the analytic formulas described in Sections 5, are correct.

4 Validation: Models compared to experimental data

The new theoretical models developed in this work will now be compared to both the large
angle data of Nagamiya et al. [13, 14], as well as the small angle data of Anderson et al.
[16]. All of the Nagamiya et al. data was examined previously [13, 14], but only with the
3-source model, which was found to be in good agreement. The challenge of the present
work is for the new models, which include the addition of a 4th direct knockout source,
to maintain the previously observed good agreement with Nagamiya et al. [13, 14], as
well as correctly predict the small angle Anderson et al. data [16], which has not yet been
analyzed with these models.
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The total cross-section, σ, is calculated from the NUCFRG3 model [28] with values
listed in Table 2. Any other model, such as RAADFRG [29], could alternatively be used.
Values for the coalescence coefficients are listed in Table 3.

4.1 Large angle data of Nagamiya et al. [13, 14]

4.1.1 Proton model compared to large angle data

The new proton thermal plus direct knockout 4-source model is now compared to the
large angle data of Nagamiya et al. [13, 14], which was analyzed previously [11, 12] with
the simpler 3-source thermal model.

Results for proton production are shown in Figures (29) - (30) for Ar + KCl and C
+ C, both with projectile kinetic energies of 800 MeV/n. The figures show contributions
from the 4 individual sources which add together to form the total (red curve) according
to equations (13) and (14). Comparisons with data are of the same good quality as
reported previously with the simpler 3-source model [11, 12]. The key observation is the
contribution of the direct knockout source, shown as the magenta curve in the figures.
Direct knockout only makes large contributions at very small angles and is visible only
at 10◦ for the Ar + KCl reaction, as the small magenta peak occurring at the projectile
momentum. The width of the peak is narrow because of the small temperature (2.8 MeV)
assigned to direct knockout discussed previously. For angles larger than 10◦ for Ar + KCl
and for all angles for C + C, the direct knockout contribution is not visible because it
is so small at these large angles. All of this makes sense physically: Direct knockout
fragmentation products should continue in the forward direction at the same energy as
the incident projectile. Direct knockout is highly suppressed as the angle increases. Thus,
the new 4-source model is able to retain the success of the previous 3-source model for
large angle data because the addition of the new direct source is highly suppressed at
large angles.

4.1.2 Light ion model compared to large angle data

The new light ion hybrid coalescence 4-source model is now compared to the large angle
data of Nagamiya et al. [13], which was analyzed previously [11, 12] with the simpler
3-source coalescence model.

Results for light ion production are shown in Figures (31) - (37) for Ar + KCl and C +
C, both with projectile kinetic energies of 800 MeV/n. The figures show contributions from
the 4 individual sources which, rather than simple addition, add according to equations
(17) and (18) to form the total (red curve). As with the proton case, the direct knockout
term mainy contributes at very small angles and is highly suppressed at the large angles
represented by this data. In fact, it is so small as to not be visible in any of the light ion
large angle figures.
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For light ions, there are more parameters for the new 4-source model, as compared to
the previous 3-source model. These were discussed previously and the weighting factor
parameters are listed in Tables 4 and 5. With more parameters, better agreement with
data is expected and this is seen in several of the figures, especially for t, h, α light ion
production at 15◦ for both Ar + KCl (Figures 32, 33, 34) and C + C (Figures 36, 37),
which now show much better agreement with 15◦ data compared to previous work [11].
This improved agreement is useful in space radiation applications, where the larger cross-
sections at the smaller angles produce more contribution to dose. Of course, it is essential
at the very small angles to be discussed next.

4.2 Small angle data of Anderson et al. [16]

4.2.1 Proton model compared to small angle data

The new proton thermal plus direct knockout 4-source model is now compared to the
small angle data of Anderson et al. [16]. Although not shown graphically, the previously
developed simpler 3-source model [11, 12] completely fails to describe the small angle data
[16], which is why the new 4-source model was developed.

Results for proton production in C + C reactions at 1.05 GeV/n are shown in Figure
38 as a function of angle, and in Figure 39 as a function of transverse momentum. Results
for proton production in α + C reactions at 1.05 GeV/n are shown in Figure 40 (top left
panel) at an angle of 0◦. The figures show contributions from the 4 individual sources
which add together to form the total (red curve) according to equations (13) and (14).

The direct knockout contribution of the 4-source model is now clearly evident as the
narrow magenta peak at the projectile momentum making a dominant contribution at
the smallest angles. Overall, the agreement with heavy ion projectile data as a function
of angle (Figure 38) and also as a function of transverse momentum (Figure 39) is very
good. The models clearly show the steep drop in cross-section magnitude and shape as
the angle gets larger. Also, even though the data is limited, the agreement with the light
ion α projectile data at 0◦ in Figure 40 (top left panel) is also very good.

4.2.2 Light ion model compared to small angle data

The new light ion hybrid coalescence 4-source model is now compared to small angle data
of Anderson et al. [16], which was not previously analyzed with these models. Although
not shown here, the previously developed simpler 3-source model [11, 12] completely fails
to describe the small angle data [16], which is why the new 4-source model was developed.

Results for light production in C + C reactions at 1.05 GeV/n are shown in Figures
41 - 43 as a function of angle, and again in Figures 44 - 46 as a function of transverse
momentum. Results for light production in α + C reactions at 1.05 GeV/n are shown in
Figure 40 at an angle of 0◦. The figures show contributions from the 4 individual sources
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which, rather than simple addition, add according to equation (17) and (18) to form the
total (red curve).

The quality of agreement between models and data is similar to the proton small angle
case, with overall very good agreement and a clear contribution of direct knockout at the
smallest angles, with increasing suppression as the angle increases. Of course, the overall
good agreement is not only due to the physical basis of the models, but also the choice
of parameters, which were adjusted to give the best agreement. Nevertheless, it is quite
remarkable that such a wide range of data, as shown in all the figures, agrees with the
4-source model and a limited parameter set.

5 Differential cross-sections for transport codes

The light ion differential cross-section models developed in the present work are in-
tended for use in the 3-dimensional, deterministic transport code called 3DHZETRN
[6, 7, 8, 9, 10]. Consequently, special effort was made to develop highly efficient model
parameterizations capable of fast execution times on computers. Transport codes are eval-
uated in the lab frame and do not require Lorentz-invariant8 differential cross-sections.
Instead, the non-invariant double-differential cross-section d2σ

dEdΩ
and non-invariant single-

differential spectral dσ
dE

and angular dσ
dΩ

cross-sections are required. Expressions for d2σ
dEdΩ

and dσ
dE

will be derived below, while dσ
dΩ

will be left for future work.

5.1 Parameters

When using the equations in this section for transport codes, one needs to be careful to
use the correct weighting factor parameters from Tables 4 and 5 as follows:

• If the projectile is a light ion (such as He), then use weightings from Table 4.

– The weightings are the same for all light ion fragments. For example, wD = 0.2
for d, t, h, α.

• If the projectile is a heavy ion (such as C or Ar), then use weightings from Table 5.

– The weightings are different for each light ion fragment. For example, wD = 0.2
for d; wD = 0.2 for t and h; wD = 0.4 for α.

– The wP weightings are different depending on whether the projectile nucleon
number, AP , is smaller or greater than 20. For example, wP = 2 for d; wD = 3
for t and h; wD = 3.5 for α, when AP ≤ 20. But wP = 1 for d; wD = 2 for t
and h; wD = 3 for α, when AP > 20.

8The models were developed in terms of Lorentz-invariant cross-sections because Lorentz-invariance
makes the mathematical transformations between different reference frames much simpler.
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5.2 Non-invariant double-differential cross-section

The non-invariant double-differential cross-section d2σ
dEdΩ

is related to the Lorentz-invariant
differential cross-section [30] for the outgoing fragment j via9

d2σ

dEdΩ
=

d2σ

dTdΩ
= |p| d3σ

dp3/E
=
√
TjL(TjL + 2mj)

d3σ

dp3/E
, (22)

with dp3 = p2dpdΩ, and p ≡ |p|. Also, using EjL ≡ TjL + mj =
√
p2
jL +m2

j , the

substitution |p| ≡ pjL =
√
TjL(TjL + 2mj) has been made in order to write cross-sections

as functions of the fragment kinetic energy TjL used in transport codes.

5.2.1 Proton double-differential cross-section

Writing equation (14) in terms of kinetic energy and substituting into (22) gives the final
form of the proton double-differential cross-section to be used in transport codes,

d2σ

dTpLdΩpL

= N4

√
TpL(TpL + 2mp)

×
{

exp
[
[mp − γPL(TpL +mp) + γPL βPL

√
TpL(TpL + 2mp) cos θpL]/ΘP

] }
+ exp

[
[mp − γCL(TpL +mp) + γCL βCL

√
TpL(TpL + 2mp) cos θpL]/ΘC

]
+ exp

[
[mp − γT L (TpL +mp) + γT L βT L

√
TpL(TpL + 2mp) cos θpL]/ΘT

]
{

+w
(p)
D exp

[
[mp − γPL (TpL +mp) + γPL βPL

√
TpL(TpL + 2mp) cos θpL]/ΘD

]}
,

(23)

with the relativistic γ and β factors given in equation (15).

9The solid angle is dΩ = sin θdθdφ = −d cos θdφ = −2πd cos θ when integrated over dφ. Integrating

gives
∫
dΩ =

∫ 2π

0
dφ
∫ π
0
sinθdθ = −2π

∫ −1
1

d cos θ = 2π
∫ 1

−1 d cos θ = 2π
∫ 1

−1 dz = 4π, with z ≡ cos θ.
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5.2.2 Light ion double-differential cross-section

Writing equation (18) in terms of kinetic energy and substituting into (22) gives the final
form of the light ion double-differential cross-section, in units of MeV/n, to be used in
transport codes,

d2σ

dTALdΩAL

[
mb

MeV/n

]
= A2CAN

A
4

√
TAL(TAL + 2mp)

×
{
wP exp

[
[mp − γPL(TpL +mp) + γPL βPL

√
TpL(TpL + 2mp) cos θpL]/ΘP

] }
+ wC exp

[
[mp − γCL(TpL +mp) + γCL βCL

√
TpL(TpL + 2mp) cos θpL]/ΘC

]
+ wT exp

[
[mp − γT L (TpL +mp) + γT L βT L

√
TpL(TpL + 2mp) cos θpL]/ΘT

]
{

+ wDw
(p)
D exp

[
[mp − γPL (TpL +mp) + γPL βPL

√
TpL(TpL + 2mp) cos θpL]/ΘD

]}A
,

(24)

where TA is the kinetic energy of the light ion A, in units of MeV/n. The light ion

mass, mA, in the term,10
√
TAL(TAL + 2mA), leads to the equality

√
TAL(TAL + 2mA) =√

TAL(TAL + 2mp) when units of MeV/n are used. An overall multiplicative A2 factor is

introduced to ensure units of MeV/n, as discussed in Section 5.6.

5.3 Non-invariant single-differential spectral cross-section

A spectral distribution for production of particle j, is obtained by integrating d2σ
dEdΩ

, as in

dσ

dE
=

dσ

dT
=
∫
dΩ

d2σ

dEdΩ
= 2π

∫ 1

−1
d cos θ

d2σ

dEdΩ
= 2π

∫ 1

−1
dz

d2σ

dEdΩ

= 2π|p|
∫ 1

−1
d cos θ

d3σ

dp3/E
= 2π|p|

∫ 1

−1
dz

d3σ

dp3/E

= 2π
√
TjL(TjL + 2mj)

∫ 1

−1
dz

d3σ

dp3/E
, (25)

with z ≡ cos θjL, and assuming azimuthal symmetry. Examination of equation (14) for
the proton model and equation (18) for the light ion model shows that both models are
written explicitly as functions of the proton angle, z ≡ cos θpL.

10Strictly speaking, the nucleon mass should be used instead of the proton mass, but the slight difference
between the proton and nucleon mass leads to negligible differences in cross-section results.
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5.4 Proton spectral distribution

In order to obtain the proton spectral distribution, the proton Lorentz-invariant double-
differential cross-section of equation (14), must be inserted into the right hand side of
(25). Isolating only the z terms to be integrated, equations (14) and (23) can be written
in the general form

Ep
d3σp

dp3
p

= N4

(
VPe

zWP + VCe
zWC + VT e

zWT + VDe
zWD

)
, (26)

and

d2σp

dTpdΩp

= N4

√
TpL(TpL + 2mp)

(
VPe

zWP + VCe
zWC + VT e

zWT + VDe
zWD

)
, (27)

where V and W are constants with respect to z ≡ cos θpL. In terms of kinetic energy,

VP ≡ exp{[mp − γPL (TpL +mp)]/ΘP} = eXP , (28)

WP ≡ [γPL βPL
√
TpL(TpL + 2mp) ]/ΘP , (29)

VC ≡ exp{[mp − γCL (TpL +mp)]/ΘC} = eXC , (30)

WC ≡ [γCL βCL
√
TpL(TpL + 2mp) ]/ΘC, (31)

VT ≡ exp{[mp − γT L (TpL +mp)]/ΘT } = exp{−TpL/ΘT } = eXT , (32)

WT ≡ [γT L βT L
√
TpL(TpL + 2mp) ]/ΘT = 0, (33)

VD ≡ w
(p)
D exp{[mp − γPL (TpL +mp)]/ΘD} = w

(p)
D eXD , (34)

WD ≡ [γPL βPL
√
TpL(TpL + 2mp) ]/ΘD, (35)

where the following definitions have been used,

XP ≡ [mp − γPL (TpL +mp)]/ΘP , (36)

XC ≡ [mp − γCL (TpL +mp)]/ΘC, (37)

XT ≡ [mp − γT L (TpL +mp)]/ΘT } = −TpL/ΘT , (38)

XD ≡ [mp − γPL (TpL +mp)]/ΘD. (39)

Also, WT = 0 because βT L = 0 (giving γT L = 1), due to the lab frame being defined as
the target frame. Using the result∫ 1

−1
dz exp[Wz] =

2

W
sinhW, (40)

and define

Ai ≡
Vi
Wi

sinhWi =
w

(p)
i

2Wi

(eZ
+
i − eZ

−
i ), (41)
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where

Z±i ≡ Xi ±Wi , (42)

and w
(p)
i = 1, for i = P , C, T , and w

(p)
i = w

(p)
D = 30, for i = D. The Vi

Wi
sinhWi term in

equation (41) contains multiplication of exponential functions, which can lead to overflow
or underflow problems in compilers such as FORTRAN. It is better to multiply the ex-

ponential functions analytically, as given by the term
w

(p)
i

2Wi
(eZ

+
i − eZ−i ), prior to numerical

evaluation. This will eliminate overflow or underflow problems.
Note that limx→0

sinhx
x

= 1, yields

AT =
VT
WT

sinhWT = VT , (43)

which needs to be implemented in equation (41) in order to avoid a numerical singularity
due to WT = 0 mentioned previously.

The proton spectral distribution is obtained from equation (25) as

dσ

dTpL

= 4πN4

√
TpL(TpL + 2mp) (AP +AC +AT +AD) (44)

written entirely in terms of kinetic energy, TpL, using equations (28) - (35). This is the final
form of the spectral distribution for proton production. It is a very simple and compact,
analytic equation involving no integrals, and is therefore a very efficient parameterization
of the proton production spectral distribution. No numerical techniques are required for
evaluation. Sample plots of the proton spectral distributions are provided in Figure 47.
Sample results are in Table 7.

5.5 Light ion spectral distributions

The light ion spectral distribution is more difficult to obtain from equation (17) or (18),
because of the fact that all of the contributing terms are summed and then raised to the
power A. Therefore, a general analytic expression for the spectral distribution, analogous
to equation (44) cannot be obtained. However, by definition, light ions only take the
values A = 2, 3, 4 and so a separate analytic expression can be obtained for each value of
A, as discussed below.

In the following equations, units will be denoted in square brackets, as in [units], on
the left hand side of some equations. A full discussion of where these units come from is
included in section 5.6.

In order to obtain the light ion spectral distribution, the Lorentz-invariant double-
differential cross-section of equation (18), must be inserted into the right hand side of
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(25). Again, isolating only the z terms to be integrated, equations (18) and (24) can be
written

d3σ

dp3/E

[
mb

(MeV/n)2

]
= A2CAN

A
4

(
YP e

zWP + YC e
zWC + YT e

zWT + YD e
zWD

)A
, (45)

and

d2σ

dTjLdΩjL

[
mb

MeV/n

]
= A2CAN

A
4

√
TjL(TjL + 2mj)

×
(
YP e

zWP + YC e
zWC + YT e

zWT + YD e
zWD

)A
, (46)

with an overall multiplicative A factor being introduced to ensure units of MeV/n, and
with mj being given by the proton mass and TjL written in units of MeV/n, as discussed
in section 5.6. Also, Y and W are constants with respect to z ≡ cos θjL. Specifically,

YP ≡ wP VP = wP e
XP , (47)

YC ≡ wC VC = wC e
XC , (48)

YT ≡ wT VT = wT e
XT , (49)

YD ≡ wD VD = w
(p)
D wD e

XD . (50)

Substituting equation (45) into (25) gives the general light ion spectral distribution for
arbitrary A as

dσ

dT

[
mb

MeV/n

]
= 2πA2CAN

A
4

√
TjL(TjL + 2mp)

×
∫ 1

−1
dz
(
YP e

zWP + YC e
zWC + YT e

zWT + YD e
zWD

)A
. (51)

Although this equation is easily evaluated numerically, it cannot be analytically inte-
grated for arbitrary A. In the interests of providing results that can be efficiently used in
transport codes, the above equation will now be analytically integrated for the values of
A appropriate for light ions, namely A = 2, 3, 4.
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5.5.1 Deuteron (A = 2) spectral distribution

Define

w̄i ≡ wi for i = P , C, T , (52)

w̄i ≡ w
(p)
D wD for i = D, (53)

and make the additional definitions

Ei ≡
Y 2
i

Wi

sinh(2Wi) =
w̄2
i

2Wi

(e2Z+
i − e2Z−i ), (54)

Fij ≡
4YiYj

Wi +Wj

sinh(Wi +Wj) =
2w̄iw̄j
Wi +Wj

(eZ
+
i +Z+

j − eZ
−
i +Z−j ), (55)

where the exponential terms in the Y and sinh functions have been evaluated analytically,
in order to avoid overflow or underflow problems, as discussed previously. Note that
limx→0

sinh 2x
x

= 2, yields

ET =
Y 2
T

WT
sinh(2WT ) = 2Y 2

T , (56)

which needs to be implemented in equation (54) in order to avoid a numerical singular-
ity. For A = 2, equation (51) is analytically integrated to give the deuteron spectral
distribution in closed form as

dσ

dTAL

[
mb

MeV/n

]
= 2πA2CAN

2
4

√
TAL(TAL + 2mp) (EP + EC + ET + ED

+ FPC + FPT + FPD + FCT + FCD + FT D), (57)

with mp being given by the proton mass and TAL in units of MeV/n. Sample plots of the
deuteron spectral distributions are provided in Figure 47. Sample results are in Table 7.
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5.5.2 Triton and Helion (A = 3) spectral distribution

Make the definitions

Gi ≡
Y 3
i

Wi

sinh(3Wi) =
w̄3
i

2Wi

(e3Z+
i − e3Z−i ), (58)

Hij ≡
9Y 2

i Yj
2Wi +Wj

sinh(2Wi +Wj) =
9w̄2

i w̄j
2(2Wi +Wj)

(e2Z+
i +Z+

j − e2Z−i +Z−j ), (59)

Jijk ≡
18YiYjYk

Wi +Wj +Wk

sinh(Wi +Wj +Wk)

=
9w̄iw̄jw̄k

Wi +Wj +Wk

(eZ
+
i +Z+

j +Z+
k − eZ

−
i +Z−j +Z−

k ). (60)

Note that limx→0
sinh 3x
x

= 3, yields

GT =
Y 3
T

WT
sinh(3WT ) = 3Y 3

T , (61)

which needs to be implemented in equation (58) in order to avoid a numerical singularity.
For A = 3, equation (51) is analytically integrated to give the triton and helion spectral
distributions in closed form as

dσ

dTAL

[
mb

MeV/n

]
= 2πA2CAN

3
4

√
TAL(TAL + 2mp)× 2

3
(GP + GC + GT + GD +HPC

+ HPT +HPD +HCP +HCT +HCD +HT P +HT C +HT D
+ HDP +HDC +HDT + JCT D + JPT D + JPCD + JPCT ), (62)

with mp being given by the proton mass and TAL in units of MeV/n. Sample plots of the
triton spectral distributions are provided in Figure 47. Sample results are in Table 7.
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5.5.3 Alpha (A = 4) spectral distribution

Make the definitions

Ki ≡
Y 4
i

4Wi

sinh(4Wi) =
w̄4
i

8Wi

(e4Z+
i − e4Z−i ), (63)

Lij ≡
4Y 3

i Yj
3Wi +Wj

sinh(3Wi +Wj) =
2w̄3

i w̄j
3Wi +Wj

(e3Z+
i +Z+

j − e3Z−i +Z−j ), (64)

Mij ≡
6Y 2

i Y
2
j

2(Wi +Wj)
sinh 2(Wi +Wj) =

3w̄2
i w̄

2
j

2(Wi +Wj)
(e2Z+

i +2Z+
j − e2Z−i +2Z−j ), (65)

Nijk ≡
12Y 2

i YjYk
2Wi +Wj +Wk

sinh(2Wi +Wj +Wk)

=
6w̄2

i w̄jw̄k
2Wi +Wj +Wk

(e2Z+
i +Z+

j +Z+
k − e2Z−i +Z−j +Z−

k ), (66)

Oijkl ≡
24YiYjYkYl

Wi +Wj +Wk +Wl

sinh(Wi +Wj +Wk +Wl)

=
12w̄iw̄jw̄kw̄l

Wi +Wj +Wk +Wl

(eZ
+
i +Z+

j +Z+
k

+Z+
l − eZ

−
i +Z−j +Z−

k
+Z−

l ). (67)

Note that limx→0
sinh 4x

4x
= 1, yields

KT =
Y 4
T

4WT
sinh(4WT ) = Y 4

T , (68)

which needs to be implemented in equation (63) in order to avoid a numerical singularity.
For A = 4, equation (51) is analytically integrated to give the alpha spectral distribution
in closed form as

dσ

dTAL

[
mb

MeV/n

]
= 2πA2CAN

4
4

√
TAL(TAL + 2mp)× 2(KP +KC +KT +KD

+ LPC + LPT + LPD + LCP + LCT + LCD
+ LT P + LT C + LT D + LDP + LDC + LDT
+MPC +MPT +MPD +MCT +MCD +MT D

+NPCT +NPCD +NPT D +NCPT +NCPD +NCT D
+NT PC +NT PD +NT CD +NDPC +NDPT +NDCT
+OPCT D), (69)

with mp being given by the proton mass and TAL in units of MeV/n. Sample plots of the
alpha spectral distributions are provided in Figure 47. Sample results are in Table 7.
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5.6 Units

Unit analysis is very important when implementing the formulas of the present work into
transport codes. Therefore, a detailed discussion is now given. The symbol ∼ will be used
to denote units. Also, angles in steradian (sr) are not written explicitly, because they are
not units in the normal sense. The system of units in the present work uses standard
particle physics units, with the speed of light c ≡ 1. The units of the Lorentz-invariant
double-differential cross-section are given by11

E
d3σ

dp3
∼ mb

MeV2
, (70)

where σ ∼ mb and E ∼ p ∼ MeV. Also, note m ∼ MeV. The coalescence model raises
these units to the power of A on the right hand side of equation (1), implying that CA
carries different units for each light ion, depending on the value of A. Therefore, the units
of CA are

CA ∼
(

mb

MeV2

)1−A

. (71)

Equation (2) implies that the units of the normalization constant are the same as the
Lorentz-invariant double-differential cross-section, namely

N ∼ mb

MeV2
. (72)

This is consistent with explicit formulas for N given in equations (4) and (16) where the
units are carried by the term

σ

mp

Θ−1 ∼ mb

MeV2
, (73)

with temperature units Θ ∼ MeV.
Consider now the units of spectral distribution,

dσ

dT
∼ mb

MeV
, (74)

and analyze the units in equation (51). Equations (28) - (35) show that the V and W
terms do not carry units. This is denoted as

V ∼ W ∼ 1. (75)

11Energy units of MeV are used for illustration. GeV can equally be used.
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Therefore, the units of dσ
dT

in equation (51) are carried by the term CAN
A
4

√
TjL(TjL + 2mj),

as in

dσ

dT
∼ CAN

A
4

√
TjL(TjL + 2mj) ∼

(
mb

MeV2

)1−A (
mb

MeV2

)A

MeV ∼ mb

MeV
(76)

arriving at the correct units for dσ
dT

.
Calculation of coalescence coefficients has been discussed previously [12], but impor-

tant details will be repeated here. The coalescence coefficient, CA, is calculated as [13]

CA =
c̃A
V A−1

, (77)

where c̃A is constant for each value of A. The interaction volume is V = 4
3
πR3, with the

interaction radius R given by [13]

R = a(A
1/3
P + A

1/3
T ) + b , (78)

where a and b are constants from reference [13] and listed in Table 6 of the present work.
AP and AT are the mass numbers of the projectile and target nuclei, respectively. The
units of R, a, b are all fm ≡ 10−15m,

R ∼ a ∼ b ∼ fm, (79)

where

fm2 ≡ 10 mb. (80)

The calculated CA values in equation (77) require the constant c̃A values as input.
These c̃A are constants, which vary only with A, and they have been determined [12] from
the reaction Ar (800MeV/n) + KCl as follows,

c̃A = C
obs[Ar(800MeV/n)+KCl]
A V A−1 , (81)

where C
obs[Ar(800MeV/n)+KCl]
A are the observed CA values for the reaction of Ar (800MeV/n)

+ KCl [12, 13]. The units of c̃A are

c̃A ∼
(

mb

MeV2

)1−A

(fm3)A−1, (82)

Even though this can be simplified further using the relation between fm and mb in
equation (80), it will be left in this form because the calculation of the interaction radius in
equation (78), is naturally given in fm, and the units of the V A−1 term in the denominator
of equation (77) cancels the (fm3)A−1 units in equation (82), to give ( mb

MeV2 )1−A in equation
(77), as in

CA =
c̃A
V A−1

∼

(
mb

MeV2

)1−A
(fm3)A−1

(fm3)A−1
∼
(

mb

MeV2

)1−A

. (83)

25



5.6.1 Units of MeV/n

Up to now, energy units of MeV have been discussed. However, HZETRN and many other
transport codes instead use units of MeV/n. Refer to equation (1), where A is the mass

of the emitted light ion. The energy units of Ep
d3σp

dp3
p

on the right hand side are MeV. With

the definitions pA ≡ App and EA ≡ AEp, the energy units of EA
d3σA
dp3

A
on the left hand side

are also obviously MeV and not MeV/n. Thus, the natural units of the coalescence model
are MeV, not MeV/n, because of the definitions of pA and EA inherent in the coalescence
model. Nevertheless, the conversion factor is simple, namely

EA
d3σA
dp3

A

[
mb

(MeV/n)2

]
= A2EA

d3σA
dp3

A

[
mb

MeV2

]
, (84)

with the square brackets denoting units. In other words, in units of MeV/n, the coales-
cence model is written

EA
d3σA
dp3

A

[
mb

(MeV/n)2

]
= A2CA

(
Ep
d3σp

dp3
p

)A
, (85)

instead of equation (1).
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6 Summary, conclusions and future work

New models for proton and light ion production in nucleus-nucleus collisions have been
introduced in the present work. The models are collectively referred to as DDFRG
(Double-Differential FRaGmentation), which continues the set of nuclear physics models
previously developed at NASA, known as NUCFRG [28], RAADFRG [29], EMDFRG [31]
and QMSFRG [32]. The DDFRG models are the first set of models devoted to differen-
tial cross-sections, whereas the previous models [28, 29, 31] calculated total cross-sections
only.

The goal has been to introduce parameterizations represented by analytic formulas
that can be used efficiently in space radiation transport codes. The model for proton
production represents three thermal sources produced in the projectile, central fireball,
and target rest frames. An additional direct production Gaussian source (equivalent
to a low temperature thermal source) has been introduced to account for quasi-elastic
direct knockout. The model for light ion production uses a hybrid coalescence model in
which particles from the four sources coalesce to form composite light ions. Weighting
parameters have been introduced that give different weights to the four sources.

The models have been compared to a variety of high energy experimental data for both
light and heavy ion projectiles, with the fragments being produced at both small and large
angles. Agreement of the models with data is very good, with the models showing the
large quasi-elastic peak at very small angles with suppression at large angles. The data
shows variations with angle and fragment energy of many orders of magnitude and the
models are able to capture this. In addition, the models have been developed to be valid
for both light and heavy projectiles.

The main conclusion of the present work is that a single set of models, with judicious
choice of a finite set of parameters, is able to describe a broad range of experimental data
for proton and light ion production in relativistic heavy ion collisions relevant to space
radiation.

The models were developed with emphasis on Lorentz-invariant double-differential
cross-sections, as these were the data measured. However, space radiation transport
codes generally use non-invariant double-differential cross-sections in energy and angle,
and a set of closed-form analytic formulas for these quantities has been developed, as well
as closed-form analytic formulas for fragment spectral distributions.

6.1 Future work

Further development of DDFRG is necessary for the following reasons:

1. Light ions and neutrons dominate dose-equivalent [1] for realistic shield thicknesses
(≥ 20 g/cm2). They are scattered at large angles and therefore require 3-dimensional
transport (3DHZETRN) and nuclear physics double-differential cross-sections.
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2. Transport code (GEANT, FLUKA, MCNP, PHITS, HZETRN, SHIELD) compar-
isons [3] show the largest differences for light ions. The disagreements are mainly
due to inaccurate light ion nuclear physics models and lack of experimental data.

3. An experimental thick target program was recently completed at the NASA Space
Radiation Laboratory (NSRL), located at Brookhaven National Laboratory, using
unique combinations of double thick targets where incident beam particles scattered
from the first target and secondary fragments subsequently scattered from a back
target. This simulated the scattering geometry in a spacecraft, where fragments
are produced when GCR interact with a spacecraft wall and more scattered prod-
ucts are produced from the far, back and surrounding walls. These measurements
show significant discrepancies [33] compared to transport codes (MCNP, PHITS)
for light ions. Further cross-section measurements of light ion fragments have been
recommended to resolve these discrepancies.

4. Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) light ion flux
measurements highlight the need for improved nuclear interaction models. Light
ion model results show moderate to large discrepancies [5, 34, 35] over the MSL-
RAD energy range, with model errors mainly attributed to inaccurate light ion
nuclear physics models. In this particular case, the observed discrepancies did not
contribute significantly to dose-equivalent, but improvements would yield better
agreement with MSL-RAD.

5. Calculations with the HZETRN transport code significantly under-predict dose mea-
surements from the International Space Station [36, 37], at high latitudes where
GCR contribute most. The cause of the discrepancy has yet to be fully clarified,
but improvements to the underlying cross-section models may help remove some
measure of uncertainty.

6. Recent measurements of light ion cross-section production at NSRL [38] show large
differences between measurements and the light ion cross-section models used in the
PHITS [39] transport code.

7. Light ion cross-section measurements [40] are needed to improve inaccurate light ion
nuclear physics models. Reviewers of thick target experiments also recommended
further cross-section measurements.

8. Light ion cross-sections represent the largest physics uncertainty in space radiation.

9. Light ion cross-section measurements represent the largest gap in the cross-section
database [40].

10. An experimental double-differential cross-section measurement program was also
recently completed at NSRL, using oxygen and iron beams on several targets, with
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production of light ion fragments. Large differences were seen between measure-
ments and the light ion cross-section models used in the PHITS [39] transport code.

The highest priority for future work is complete analysis of all experimental differen-
tial cross-section data that has been measured and is relevant for space radiation. The
parameters in the present work need to be fine-tuned to fit all available data. One of
the most time-consuming parts of the present work was correct treatment of the trans-
verse momentum variables in which the data were measured. Generally, it is not a simple
task to acquire the data and compare the theoretical models, especially for differential
cross-sections, and often a great deal of work is required. Neutron double-differential cross-
sections can be just as important as light ion cross-sections. DDFRG can be adapted to
provide models for neutron production. A list of prioritized future work is given below:

1. Complete analysis of all existing experimental differential cross-section data relevant
to space radiation.

2. Tune model parameters to obtain best fits to all data.

3. Develop analytic formulas for angular distributions, dσ
dΩ

.

4. Improve RAADFRG predictions of light ion and neutron total cross-sections.

5. Make predictions for light ion total cross-sections, by integrating the Lorentz-invariant
double-differential cross-sections developed in the present work. Compare predic-
tions to the NUCFRG [28] and RAADFRG [29] codes.

6. Adapt the proton production model to account for neutron production.

7. Develop a high energy proton and light ion production model. The thermal models
discussed in the present work are expected to be accurate in the intermediate energy
region, but not at high energy. A high energy model, perhaps based on Feynman
scaling, needs to be developed. Existing models [41, 42, 43] can be adapted.

8. Double-differential and single-differential electromagnetic dissociation contributions
[31, 44] need to be added to the models developed herein. Existing models [44] can
be adapted.

9. Compare cross-section model predictions to other models, such as those used in the
Russian (ROSCOSMOS) SHIELD transport code [3, 4] and other transport codes.

10. Make further recommendations for future cross-section measurements.

11. Compare the updated 3DHZETRN code with measurements, such as those obtained
with MSLRAD [5, 34, 35].
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7 Appendix: Transforming transverse momentum to

angle

Inclusive nuclear or particle reactions can be written in general form as

P + T → F + · · · , (86)

where P represents the projectile, T represents the target and F represents the fragment
of interest. The reaction is denoted as inclusive because final state reactions products,
other than F , are not specified. If all final state particles are listed, then the reaction is
called exclusive. An inclusive reaction is the sum of all exclusive reactions that include F
in the final state. The 3-dimensional volume element in momentum space is

dp3 = p2dpdΩ = p2dp sin θdθdφ, (87)

where p ≡ |p| is the magnitude of the 3-momentum. Assuming azimuthal symmetry, the
momentum volume element becomes [30, 41, 44, 45, 46]

dp3 = p2dpdΩ = 2πp2dp sin θdθ (spherical coordinates), (88)

= 2πp||p⊥dp⊥ (cylindrical coordinates), (89)

with the longitudinal momentum, p||, and transverse momentum, p⊥, defined as

p|| ≡ p cos θ, (90)

p⊥ ≡ p sin θ. (91)

The momentum and angle variables are used to construct double-differential cross-sections
for production of fragment, F .

In spherical coordinates with azimuthal symmetry, the two fundamental fragment in-
dependent variables are momentum and angle, (p, θ). In cylindrical coordinates with
azimuthal symmetry, the fundamental independent fragment variables are longitudinal
and transverse momentum, (p||, p⊥). The double-differential cross-sections will always be
written in terms of the fragment independent variables, and experimental and theoretical
plots of cross-sections can be made in three dimensions, with the vertical y axis represent-
ing the double-differential cross-section and the two horizontal x and z axes representing
the two independent variables. Usually, however, plots will be made in two dimensions
with the vertical y axis representing the double-differential cross-section, the horizontal
x axis representing momentum, p, and a family of curves plotted for various angles, θ.
Equivalently, the x axis can be p||, and a family of curves plotted for various values of p⊥.

A thermal/coalescence model for light ion fragment double-differential cross-sections
was presented in reference [12] and compared to a variety of experimental data [13]. The
data was given in terms of momentum and angle, (p, θ), and all model and experimental
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cross-section plots were made in terms of these variables. Also, the theoretical models
were mainly presented in terms of momentum and angle, (p, θ), but it was also shown
how to write the theoretical models in terms of longitudinal and transverse momentum,
(p||, p⊥).

Another important and extensive data set has been presented by Anderson and col-
laborators [16]. However, this data set was not analyzed in the previous work [12] and
the aim of the present paper is to compare the thermal/coalescence model developed in
reference [12] to the Anderson data set [16]. It will be seen that comparing theoretical
models to differential cross-section data is never straightforward, unlike the situation for
total cross-section data. Differential cross-section data is almost always reported in terms
of variables quite different to variables employed in a given theoretical model. The con-
version of the variable sets from experiment to theoretical models and vice versa is often
extremely cumbersome and very time consuming, as will be seen in the present work, and
as also illustrated in previous works [41, 42, 47, 48].

The Anderson data set [16] contains a complicated set of fragment variables. The
two independent variables are neither momentum and angle, (p, θ), nor longitudinal and
transverse momentum, (p||, p⊥), but rather involve a hybrid mixture of the dependent
variables, momentum and transverse momentum, (p, p⊥); a mixture of one spherical coor-
dinate variable, p, and one cylindrical coordinate variable, p⊥. It will now be shown how
to use these dependent hybrid variables.

7.1 Thermal proton production model

Equation (91) implies that

θ = arcsin(p⊥/p), (92)

so that the spherical coordinate set, (p, θ), is replaced by (p, arcsin(p⊥/p)), which is a
function of the mixed variable set (p, p⊥).

7.1.1 (pjL, θjL) variables

The thermal model for a particle j emitted in the ∗ frame (∗ = projectile or central fireball
or target) is [12]

E
d3σ∗
dp3

(pjL, θjL) = N e−Tj∗/Θ∗ = N exp[−Tj∗(pjL, θjL)/Θ∗], (93)

where pjL and θjL are the momentum and angle of particle j in the lab frame, L. The
notation (pjL, θjL) indicates that the functions must be written as explicit functions of the
lab frame L variables pjL and θjL because these are the variables used for the experimental
cross-sections, with which the thermal model is to be compared. However, Tj∗ is the
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kinetic energy of particle j in the ∗ frame, and this needs to be Lorentz-transformed to
the lab frame, L. The temperature of the ∗ frame is Θ∗, which does not need to be
Lorentz-transformed because it is a Lorentz-scalar.

In order to Lorentz-transform the particle j kinetic energy, use equation (6) to write

Tj∗ = Ej∗ −mj∗. (94)

The Lorentz-transformation of the total energy is [30]

Ej∗ = γ∗L EjL − γ∗L β∗L pZjL , (95)

where the longitudinal momentum is given as

pZjL ≡ pjL cos θjL, (96)

with pjL ≡ |pjL|. The relativistic γ∗L and β∗L factors refer to the speed of the ∗ frame with
respect to the lab frame, L. That is, they are relations between different reference frames
and have nothing to do with particle j. Thus, the Lorentz-transformed total energy of
particle j in terms of (pjL, θjL) variables is [12]

Ej∗ = γ∗L
√
p2
jL +m2

j − γ∗L β∗L pjL cos θjL , (97)

which is simply substituted into equation (93) via equation (94) to give the final answer
for the thermal model Lorentz-invariant double-differential cross-section in the ∗ frame,

E
d3σ∗
dp3

(pjL, θjL) = N exp[−(γ∗L
√
p2
jL +m2

j − γ∗L β∗L pjL cos θjL −m)/Θ∗]. (98)

7.1.2 (pjL, p
⊥
jL) variables

From equation (91), transverse momentum of particle j is

p⊥jL ≡ pjL sin θjL, (99)

giving the lab scattering angle of particle j as

θjL = arcsin(p⊥jL/pjL), (100)

which is a specific form of equation (92). However, θjL is a double valued function: The
same value of p⊥ can give rise to two different values of θjL in the interval12 0 < θjL < π.
The two values of θjL are

θ
(1)
jL = arcsin(p⊥jL/pjL), (101)

θ
(2)
jL = π − arcsin(p⊥jL/pjL), (102)

12If the interval is not restricted, then θjL is a multivalued function.
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Substituting θ
(2)
jL into (99), with the trigonometric [18] identity, sin(π− θ) = sin θ, gives13

p
⊥(2)
jL = pjL sin θ

(2)
jL = pjL sin[π − arcsin(p⊥jL/pjL)] (103)

= pjL sin[arcsin(p⊥jL/pjL)] = pjL sin θ
(1)
jL ≡ p

⊥(1)
jL , (104)

showing that the two different angles, θ
(1)
jL and θ

(2)
jL , give the same value of p⊥jL, as required.

The double valued function gives rise to double values of longitudinal momentum,

p
(1)
ZjL = pjL cos θ

(1)
jL , (105)

p
(2)
ZjL = pjL cos θ

(2)
jL (106)

= pjL cos[π − arcsin(p⊥jL/pjL)] = −pjL cos[arcsin(p⊥jL/pjL)] (107)

= −pjL cos θ
(1)
jL = −p(1)

ZjL, (108)

using cos(π−θ) = − cos θ. The above result, that the longitudinal momenta are the same
in magnitude, but opposite in direction, is expected, and can be written in compact form,

p
(1,2)
ZjL = p±ZjL = ±|pZjL| , (109)

where |pZjL| ≡ |p(1)
ZjL| = |p

(2)
ZjL|. Equation (109) shows p

(1)
ZjL taking the positive sign in the

forward Z direction and p
(2)
ZjL taking the negative sign in the backward Z direction. The

double values of energy are

E
(1)
j∗ = γ∗L

√
p2
jL +m2

j − γ∗L β∗L p
(1)
ZjL, (110)

E
(2)
j∗ = γ∗L

√
p2
jL +m2

j − γ∗L β∗L p
(2)
ZjL

= γ∗L
√
p2
jL +m2

j + γ∗L β∗L p
(1)
ZjL, (111)

or, in compact form,

E
(2,1)
j∗ ≡ E±j∗ = γ∗L

√
p2
jL +m2

j ± γ∗L β∗L |pZjL|. (112)

The kinetic energy values are

T
(1)
j∗ = E

(1)
j∗ −mj∗ , (113)

T
(2)
j∗ = E

(2)
j∗ −mj∗ , (114)

or

T
(2,1)
j∗ = T±j∗ = E±j∗ −mj∗. (115)

13The alternate possible solution, θ
(2)
jL = π/2 + arcsin(p⊥jL/pjL), is not used because it does not lead to

the required result, p
⊥(1)
jL = p

⊥(2)
jL .
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Note that

(p
(1)
jL )2 = (p

(1)
ZjL)2 + (p

⊥(1)
jL )2 = (p

(2)
ZjL)2 + (p

⊥(2)
jL )2 = (p

(2)
jL )2, (116)

so that no (1,2) index is required for p2
jL, since p2

jL = (p±jL)2 = (p
(1)
jL )2 = (p

(2)
jL )2.

The behavior of the energy is very important. Equations (110) and (111) show that the
expressions for energy are the same except for a change in sign of the second term. This
is also see in equation (97), which also shows that the second term undergoes a change
in sign as θ crosses over the value of π/2. The cross-section in equation (98) changes
smoothly as θ varies across π/2. The map from angle to cross-section is one-to-one, which
is typical of a well behaved function.

As a consequence of equations (101) - (114), the cross-section in (pjL, p
⊥
jL) variables is

double valued,

E
d3σ

(1)
∗

dp3
(pjL, p

⊥
jL) = N e−T

(1)
j∗ /Θ∗

= N exp{[γ∗L
√
p2
jL +m2

j − γ∗L β∗L pjL cos[arcsin(p⊥jL/pjL)]−mj∗]/Θ∗} , (117)

and

E
d3σ

(2)
∗

dp3
(pjL, p

⊥
jL) = N e−T

(2)
j∗ /Θ∗

= N exp{[γ∗L
√
p2
jL +m2

j − γ∗L β∗L pjL cos[π − arcsin(p⊥jL/pjL)]−mj∗]/Θ∗}

= N exp{[γ∗L
√
p2
jL +m2

j + γ∗L β∗L pjL cos[arcsin(p⊥jL/pjL)]−mj∗]/Θ∗} , (118)

representing a one-to-many (two) map from p⊥ to cross-section, which is not a well be-
haved function. In compact form,

E
d3σ

(2,1)
∗

dp3
(pjL, p

⊥
jL) ≡ E

d3σ±∗
dp3

(pjL, p
⊥
jL) , (119)

with

E
d3σ±∗
dp3

(pjL, p
⊥
jL)

= N exp{[γ∗L
√
p2
jL +m2

j ± γ∗L β∗L pjL cos[arcsin(p⊥jL/pjL)]−mj∗]/Θ∗}. (120)

In spite of the fact that the differential cross-section function (120) is double valued
over the interval θ : 0 ≤ θ ≤ π, it is actually a well behaved single valued function over
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the separate intervals θ : 0 ≤ θ ≤ π/2 and θ : π/2 < θ ≤ π. Mathematically, this is
written

E d3σ∗
dp3 (pjL, θjL) =


E d3σ−∗

dp3 (pjL, p
⊥
jL) , 0 ≤ θjL ≤ π/2,

E d3σ+
∗

dp3 (pjL, p
⊥
jL) , π/2 < θjL ≤ π.

(121)

However, over the p⊥ interval, the function cannot be written in such a concise form and
it remains double valued over any p⊥ interval. Therefore, the double valued differential
cross-section (120) is impractical to deal with, especially when comparing cross-section
model calculations to experiment. A well behaved single valued function is required.
Experimentally, there will only be one measured differential cross-section value associated
to each p⊥jL value: Nature is single valued. The fundamental question is how to deal
practically with the double valued differential cross-section (120), when performing cross-
section model calculations and comparing to experiment. The only practical solution is
to incoherently14 add the two values as in

E
d3σ∗
dp3

(pjL, p
⊥
jL) = E

d3σ+
∗

dp3
(pjL, p

⊥
jL) + E

d3σ−∗
dp3

(pjL, p
⊥
jL), (122)

which now represents a well behaved single valued function! This makes perfect sense: A
single value of p⊥jL will receive a contribution from both θ

(1)
jl and θ

(2)
jl . Equation (122) is

the final theoretical result to be compared to experiment.

7.1.3 Integrating the differential cross-section to form the total cross-section

The thermal model is expressed very simply in the rest frame of the nucleus in which
the fragments are being emitted, but is expressed in a complicated way after Lorentz
transformation to the lab frame. Compare equations (93) and (120).

An important check of the Lorentz transformation of differential cross-sections can
always be made. The total cross-section is obtained by integrating the differential cross-
sections. Because the total cross-section is a Lorentz scalar (meaning that it is Lorentz
invariant), it will have the same value in different reference frames. Therefore, integration
of the simple expression (93), should give the same value as the integral of the complicated
Lorentz transformed expression (120). Also, the integration variables will be different and
will be local to the appropriate reference frame. Such as test is always carried out in the
present and previous [12] work, and gives one complete confidence that the complicated
Lorentz transformations are being done correctly.

14In quantum mechanics, there are two types of addition. Coherent addition refers to the addition of
complex valued scattering amplitudes, whereas incoherent addition refers to the addition of real valued
cross-sections.
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In the present work, the integration becomes much more complicated than previously
[12] because the differential cross-section is now double valued with the (p, p⊥) variable
set. Making the integrations even more complicated is the fact that the variables (p, p⊥)
are not completely independent, because p⊥ depends on p via equation (91).

This dependence will now seen to be important when the momentum volume element
is integrated to form a total cross-section, σ, as in

σ ≡
∫ dp3

E

d3σ

dp3/E
, (123)

where the Lorentz-invariant differential cross-section is used as an integration example.
There are two pieces in any integral: One is the volume element, dp3, and the other is the
integrand, d3σ

dp3/E
. Each of these will now be considered separately.

Equation (91) gives

dθ =
dp⊥

p cos θ
. (124)

Substituting into the volume element in equation (88) gives

dp3 = 2πp2dp sin θdθ = 2πp dp tan θ dp⊥ (125)

= 2πp dp tan[arcsin(p⊥/p)] dp⊥, (126)

which is the momentum volume element written in terms of spherical/cylindrical hybrid
variables, (p, p⊥). Integration of the volume element with spherical coordinates is∫

dp3 = 2π
∫ ∞

0
dp
∫ π

0
dθ p2 sin θ, (127)

= 2π
∫ ∞

0
dp
∫ π/2

0
dθ p2 sin θ + 2π

∫ ∞
0

dp
∫ π

π/2
dθ p2 sin θ, (128)

where the latter equation shows an equivalent way of writing the integral, but separated
into two angular regions. Integration with hybrid variables is somewhat subtle. Equation
(91) shows that the value of p⊥ ranges from 0 to a maximum value of p, so that the
integration limits for p⊥ appear as∫

dp3 = 2π
∫
p2dp sin θdθ = 2π

∫
p dp tan θ dp⊥ (129)

6= 2π
∫ ∞

0
dp
∫ p

0
dp⊥ p tan[arcsin(p⊥/p)]. (130)

The symbol 6= is used instead of an = sign, because it is shown below that this equation
is actually incorrect. Note the complication of the hybrid variables: The two integrals,∫
dp⊥ and

∫
dp, are not independent. The upper limit of the

∫
dp⊥ integral depends on
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the value of p in the
∫
dp integral. A further complication is that the full range of θ is not

covered in the above expression. With p⊥ ranging from 0 to p, the value of θ only ranges
from 0 to π/2. Mathematically,

θ : 0→ π/2 ⇒ p⊥ : 0→ p, (131)

as seen in equation (91). Thus, to capture the full range θ : 0 → π, one must cover the
interval p⊥ : 0 → p for a second time in equation (130). Of course it is wrong to simply
multiply the integral by 2, because the values of p⊥ are completely different in the two
angular regions on either side of π/2. Adding π/2, as in∫

dp3 6= 2π
∫ ∞

0
dp
∫ p

0
dp⊥ p tan[arcsin(p⊥/p)]

+ 2π
∫ ∞

0
dp
∫ p

0
dp⊥ p tan[π/2 + arcsin(p⊥/p)], (132)

covers the full angular range, θ : 0 → π/2 → π = 0 → π. However, p⊥ is not covering
the range correctly. As the angle changes, θ : 0 → π/2 → π, the transverse momentum
should change as p⊥ : 0→ p→ 0 = 0→ 0. Thus, the second p⊥ integral should have the
limits interchanged, as in

∫ 0
p dp

⊥. But, to get the same angular variation, θ : 0→ π/2→
π = 0→ π, one must now use tan[π− arcsin(p⊥/p)]. Therefore, the correct simultaneous
variation of both θ and p⊥ occurs by writing the integral as∫

dp3 = 2π
∫ ∞

0
dp
∫ p

0
dp⊥ p tan[arcsin(p⊥/p)]

+ 2π
∫ ∞

0
dp
∫ 0

p
dp⊥ p tan[π − arcsin(p⊥/p)]. (133)

Equation (133) can be checked for correctness. One can take an expression [12] for the
Lorentz-invariant double-differential cross-section and integrate over the (p, θ) variable set
to obtain the total cross-section, as in equation (123). Using equation (127), this is very
straightforward and non-problematic. One can then perform integration with the hybrid
variables, as given by equation (133). If the above mathematics is correct, then the value
of the total cross-section, σ, obtained with either integration method should be the same.
This was confirmed for a variety of test cases.

It is now a straightforward procedure to insert the double valued differential cross-
section integrand (120), into the total cross-section integral (123), using the measure
(133). The result is

σ =
∫ dp3

E
E
d3σ±∗
dp3

(pjL, p
⊥
jL) (134)

= 2π
∫ ∞

0
dp
∫ p

0
dp⊥

p

E
tan[arcsin(p⊥/p)]E

d3σ−∗
dp3

(pjL, p
⊥
jL)

+ 2π
∫ ∞

0
dp
∫ 0

p
dp⊥

p

E
tan[π − arcsin(p⊥/p)]E

d3σ+
∗

dp3
(pjL, p

⊥
jL). (135)
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Using the identity [18], tan(π − θ) = − tan θ, and
∫ 0
p dp

⊥ = −
∫ p

0 dp
⊥, gives

σ = 2π
∫ ∞

0
dp
∫ p

0
dp⊥

p

E
tan[arcsin(p⊥/p)]

{
E
d3σ+

∗
dp3

(pjL, p
⊥
jL) + E

d3σ−∗
dp3

(pjL, p
⊥
jL)

}
, (136)

or simply,

σ = 2π
∫ ∞

0
dp
∫ p

0
dp⊥

p

E
tan[arcsin(p⊥/p)]E

d3σ∗
dp3

(pjL, p
⊥
jL), (137)

with E d3σ∗
dp3 (pjL, p

⊥
jL) from equation (122). Equation (137) makes perfect sense: If the

differential cross-section in equation (122) has truly become a well behaved single value
function, as claimed, then it’s integral should be a simple, straightforward expression
that one would obtain without even thinking about issues of double values, either in the
integrand or volume element; and that is precisely what equation (137) represents!
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Participant (Central Fireball) Temperature ΘC 110 MeV
Spectator (Projectile = Target) Temperature ΘP = ΘT 35 MeV
Direct Knockout Effective Temperature ΘD 2.8 MeV

Direct Knockout Normalization w
(p)
D 30

Table 1: Proton thermal model temperatures and direct normalization parameters. The
temperatures, ΘC and ΘP = ΘT , are the same as previous work [12].

Reaction σ (b)
Ar (800 MeV/n) + KCl → p + X 16
C (800 MeV/n) + C → p + X 3.5
C (1.05 GeV/n) + C → p + X 3.6
α (1.05 GeV/n) + C → p + X 0.65

Table 2: Total strong interaction cross-sections calculated from NUCFRG3 [28].

Units c̃A(d) c̃A(t,h) c̃A(α)(
mb

GeV2

)1−A
(fm3)A−1 1.6× 10−3 6.9× 10−7 1.3× 10−10(

mb
MeV2

)1−A
(fm3)A−1 1.6× 103 6.9× 105 1.3× 108

Table 3: Constants c̃A used for calculation of the coalescence coefficient, CA, given in
equation (77). The first row is the same as Table 7 of previous work [12].
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wP 1
wC 3.5
wT 1
wD 2

Table 4: Light ion projectile weighting factors are the same for all fragments d, t, h, α.

d t,h α
wP (AP ≤ 20) 2 3 3.5
wP (AP > 20) 1 2 3
wC 1 1 1
wT 1 1 1
wD 0.2 0.2 0.4

Table 5: Heavy ion projectile weighting factors for fragments d, t, h, α. The value of wP
depends on AP , which denotes the mass number of the projectile.

d t,h α
a (fm) 0.24 0.24 0.24
b (fm) 2.0 1.6 1.0

Table 6: Constants [13] used for calculation of the interaction radius in equation (78).
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Reaction KEProj σ KEFrag
dσ
dT

MeV/n mb MeV/n mb (MeV/n)−1

Proton Deuteron Triton Helion Alpha
He + C 1050 650 100 8.02379 × 10−1 1.35996× 10−1 4.30049× 10−3 3.90611× 10−4

300 6.84997× 10−1 1.87102× 10−1 7.17934× 10−3 7.84985× 10−4

1050 3.90334× 10−1 6.59672× 10−1 4.50339× 10−1 8.88983× 10−1

2000 9.64866× 10−3 2.28412× 10−5 2.33210× 10−8 7.05587× 10−11

C + C 800 3500 100 5.22544 4.82347× 10−1 2.18052× 10−2 2.48534× 10−3

300 3.91629 3.88055× 10−1 1.94943× 10−2 2.52365× 10−3

800 2.80294 7.57466× 10−1 3.89567× 10−1 2.47779
2000 1.01938× 10−2 2.72423× 10−5 8.24000× 10−8 5.30612× 10−10

Ar + KCl 800 16000 100 2.38877× 101 6.31091 7.19047× 10−1 1.46325× 10−1

300 1.79030× 101 4.90425 5.98521× 10−1 1.40162× 10−1

800 1.28134E× 101 5.56050 7.34324 1.22436× 102

2000 4.66003× 10−2 1.08598× 10−4 8.68460× 10−7 1.73140× 10−8

Table 7: Sample results. KEProj = Kinetic energy of projectile. KEFrag = Kinetic energy
of fragment.
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Figure 1: Deuteron (black) and proton production (blue) experimental [13] Lorentz-
invariant double-differential cross-sections as a function of lab momentum for 800 MeV/n
Ar + KCl reactions at various production angles. The proton cross-sections have been
scaled (red) using the coalescence model of equation (1), with the coalescence coefficient
CA = 8× 10−6 taken from experimental values listed in Table VIII of reference [13]. Axes
use units of GeV and plots are the same as reference [12].
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Figure 2: Triton (black) and proton production (blue) experimental [13] Lorentz-invariant
double-differential cross-sections as a function of lab momentum for 800 MeV/n Ar +
KCl reactions at various production angles. The proton cross-sections have been scaled
(red) using the coalescence model of equation (1), with the coalescence coefficient CA =
3.5×10−11 taken from experimental values listed in Table VIII of reference [13]. Axes use
units of GeV and plots are the same as reference [12].
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Figure 3: Helion (black) and proton production (blue) experimental [13] Lorentz-invariant
double-differential cross-sections as a function of lab momentum for 800 MeV/n Ar +
KCl reactions at various production angles. The proton cross-sections have been scaled
(red) using the coalescence model of equation (1), with the coalescence coefficient CA =
3.5×10−11 taken from experimental values listed in Table VIII of reference [13]. Axes use
units of GeV and plots are the same as reference [12].
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Figure 4: Alpha (black) and proton production (blue) experimental [13] Lorentz-invariant
double-differential cross-sections as a function of lab momentum for 800 MeV/n Ar + KCl
reactions at various production angles. The proton cross-sections have been scaled (red)
using the coalescence model of equation (1), with the coalescence coefficient CA = 3×10−16

taken from experimental values listed in Table VIII of reference [13]. Axes use units of
GeV and plots are the same as reference [12].

45



1 2 3 4 5 6

10-4

0.01

1

100

pL[GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,d, θ =15o

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-6

0.001

1

1000

pL[GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,d, θ =45o

2     scaleCC.nb

0.5 1.0 1.5 2.0 2.5 3.0

10-6

0.001

1

pL[GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,d, θ =70o

scaleCC.nb     3

0.4 0.6 0.8 1.0 1.2 1.4 1.610-10

10-8

10-6

10-4

0.01

1

pL[GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,d, θ =145o

4     scaleCC.nb

Figure 5: Deuteron (black) and proton production (blue) experimental [13, 14] Lorentz-
invariant double-differential cross-sections as a function of lab momentum for 800 MeV/n
C + C reactions at various production angles. The proton cross-sections have been scaled
(red) using the coalescence model of equation (1), with the coalescence coefficient CA =
3 × 10−5 taken from experimental values listed in Table VIII of reference [13]. Axes use
units of GeV and plots are the same as reference [12].
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Figure 6: Triton (black) and proton production (blue) experimental [13, 14] Lorentz-
invariant double-differential cross-sections as a function of lab momentum for 800 MeV/n
C + C reactions at various production angles. The proton cross-sections have been scaled
(red) using the coalescence model of equation (1), with the coalescence coefficient CA =
6× 10−10 taken from experimental values listed in Table VIII of reference [13]. Axes use
units of GeV and plots are the same as reference [12].
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Figure 7: Helion (black) and proton production (blue) experimental [13, 14] Lorentz-
invariant double-differential cross-sections as a function of lab momentum for 800 MeV/n
C + C reactions at various production angles. The proton cross-sections have been scaled
(red) using the coalescence model of equation (1), with the coalescence coefficient CA =
6× 10−10 taken from experimental values listed in Table VIII of reference [13]. Axes use
units of GeV and plots are the same as reference [12].
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Figure 8: Same as Figure 1, except axes use units of GeV/n.
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Figure 9: Same as Figure 2, except axes use units of GeV/n.
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Figure 10: Same as Figure 3, except axes use units of GeV/n.
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Figure 11: Same as Figure 4, except axes use units of GeV/n.
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Figure 12: Same as Figure 5, except axes use units of GeV/n.
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Figure 13: Same as Figure 6, except axes use units of GeV/n.
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Figure 14: Same as Figure 7, except axes use units of GeV/n.
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Figure 15: Deuteron (black) and proton production (blue) experimental [16] Lorentz-
invariant double-differential cross-sections as a function of lab momentum for 1.05 GeV/n
C + C reactions at various production angles. The angular display of the Anderson et
al. [16] data, is obtained with the methods discussed in sections 1.2 and 7. The proton
cross-sections have been scaled (red) using the coalescence model of equation (1), with the
coalescence coefficient CA = 3 × 10−5 taken from 800 MeV/n experimental values listed
in Table VIII of reference [13]. Axes use units of GeV.
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Figure 16: Triton or Helion (black) and proton production (blue) experimental [16]
Lorentz-invariant double-differential cross-sections as a function of lab momentum for
1.05 GeV/n C + C reactions at various production angles. The angular display of the
Anderson et al. [16] data, is obtained with the methods discussed in sections 1.2 and 7.
The proton cross-sections have been scaled (red) using the coalescence model of equation
(1), with the coalescence coefficient CA = 6× 10−10 taken from 800 MeV/n experimental
values listed in Table VIII of reference [13]. Axes use units of GeV.

57



0 2 4 6 8 10

10-4

0.01

1

100

104

106

pL [GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,α, θ =0o

14     scaleAndersonCCangle.nb

1 2 3 4 5 6 7 8
0.1

1

10

100

1000

104

105

pL [GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,α, θ =2o

16     scaleAndersonCCangle.nb

0 2 4 6 8 10

0.001

0.100

10

1000

pL [GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,α, θ =3o,4o

scaleAndersonCCangle.nb     17

2 4 6 8 10 12

10-7

10-4

0.1

100

pL [GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,α, θ =5o,6o

18     scaleAndersonCCangle.nb

0 2 4 6 8 10 1210-10

10-7

10-4

0.1

100

pL [GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,α, θ =7o,8o

scaleAndersonCCangle.nb     19

0 2 4 6 8 10 12

10-10

10-7

10-4

0.1

100

pL [GeV]

E
d3

σ

dp
3

[m
b
G
eV

-2
sr

-1
]

C + C -> p,α, θ =9o,10o,11o

20     scaleAndersonCCangle.nb

Figure 17: Alpha (black) and proton production (blue) experimental [16] Lorentz-
invariant double-differential cross-sections as a function of lab momentum for 1.05 GeV/n
C + C reactions at various production angles. The angular display of the Anderson et
al. [16] data, is obtained with the methods discussed in sections 1.2 and 7. The proton
cross-sections have been scaled (red) using the coalescence model of equation (1), with
the coalescence coefficient CA = 1× 10−14. Axes use units of GeV.
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Figure 18: Same as Figure 15, except axes use units of GeV/n.
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Figure 19: Same as Figure 16, except axes use units of GeV/n.
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Figure 20: Same as Figure 17, except axes use units of GeV/n.
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Figure 21: Deuteron, triton, helion (black) and proton (blue) experimental [16] Lorentz-
invariant double-differential cross-sections as a function of lab momentum for 1.05 GeV/n
α + C reactions. Fragments are produced at an angle of 0◦. The proton cross-sections
have been scaled (red) using the coalescence model of equation (1), with the coalescence
coefficients CA = 3× 10−5 (deuteron) and CA = 6× 10−10 (triton, helion) taken from 800
MeV/n experimental values listed in Table VIII of reference [13]. Axes use units of GeV.
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Figure 22: Same as Figure 21, except axes use units of GeV/n.
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Figure 23: Same as Figure 15, except plot frames are ordered by transverse momentum,
p⊥, instead of angle.
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Figure 24: Same as Figure 16, except plot frames are ordered by transverse momentum,
p⊥, instead of angle.
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Figure 25: Same as Figure 17, except plot frames are ordered by transverse momentum,
p⊥, instead of angle.
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Figure 26: Same as Figure 23, except axes use units of GeV/n.
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Figure 27: Same as Figure 24, except axes use units of GeV/n.
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Figure 28: Same as Figure 25, except axes use units of GeV/n.
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Figure 29: Thermal plus direct knockout model cross-sections for proton production at
various angles as a function of lab momentum for Ar + KCl reactions compared to exper-
imental data [13]. Total (red) and individual contributions from central fireball (blue),
projectile (orange), direct knockout (magenta), and target (purple) are shown for the pa-
rameterized model. Direct knockout does not make any visible contribution for angles >
10◦. The individual contributions simply add to give the total, as in equations (13) and
(14). Figure is continued on the next page.
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Figure 29 continued.
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Figure 30: Thermal plus direct knockout model cross-sections for proton production at
various angles as a function of lab momentum for C + C reactions compared to experi-
mental data [13]. Individual contribution labeling and addition is the same as Figure 29.
Direct knockout does not make any visible contribution for these large angles.
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Figure 31: Hybrid coalescence model cross-sections for deuteron production at various
angles as a function of lab momentum for Ar + KCl reactions compared to experimental
data [13]. Total (red) and individual contributions from central fireball (blue), projectile
(orange), direct knockout (magenta), and target (purple) are shown for the parameterized
model. Direct knockout does not make any visible contribution for these large angles.
Rather than a simple addition, individual contributions add according to equations (17)
and (18).
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Figure 32: Hybrid coalescence model cross-sections for triton production at various angles
as a function of lab momentum for Ar + KCl reactions compared to experimental data
[13]. Individual contribution labeling and addition is the same as Figure 31. Direct
knockout does not make any visible contribution for these large angles.
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Figure 33: Hybrid coalescence model cross-sections for helion production at various angles
as a function of lab momentum for Ar + KCl reactions compared to experimental data
[13]. Individual contribution labeling and addition is the same as Figure 31. Direct
knockout does not make any visible contribution for these large angles.
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Figure 34: Hybrid coalescence model cross-sections for alpha production at various angles
as a function of lab momentum for Ar + KCl reactions compared to experimental data
[13]. Individual contribution labeling and addition is the same as Figure 31. Direct
knockout does not make any visible contribution for these large angles.
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Figure 35: Hybrid coalescence model cross-sections for deuteron production at various
angles as a function of lab momentum for C + C reactions compared to experimental
data [13]. Individual contribution labeling and addition is the same as Figure 35. Direct
knockout does not make any visible contribution for these large angles.
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Figure 36: Hybrid coalescence model cross-sections for triton production at various angles
as a function of lab momentum for C + C reactions compared to experimental data [13].
Individual contribution labeling and addition is the same as Figure 35. Direct knockout
does not make any visible contribution for these large angles.
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Figure 37: Hybrid coalescence model cross-sections for helion production at various angles
as a function of lab momentum for C + C reactions compared to experimental data [13].
Individual contribution labeling and addition is the same as Figure 35. Direct knockout
does not make any visible contribution for these large angles.
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Figure 38: Thermal plus direct knockout model cross-sections for proton production at
various angles as a function of lab momentum for C + C reactions compared to experi-
mental data [16]. Individual contribution labeling and addition is the same as Figure 29.
Figure is continued on the next page.
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Figure 38 continued.
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Figure 39: Same as Fig. 38, except that each frame represents a different value of trans-
verse momentum, p⊥, rather than angle.
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Figure 40: Top Left: Thermal plus direct knockout model cross-sections for proton pro-
duction at an angle of 0◦ as a function of lab momentum for α + C reactions compared
to experimental data [16]. Individual contribution labeling and addition is the same as
Figure 29. Top Right and Bottom: Hybrid coalescence model cross-sections for deuteron,
triton, and helion production at an angle of 0◦ as a function of lab momentum for C
+ C reactions compared to experimental data [16]. Individual contribution labeling and
addition is the same as Figure 31.
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Figure 41: Hybrid coalescence model cross-sections for deuteron production at various
angles as a function of lab momentum for C + C reactions compared to experimental
data [13]. Individual contribution labeling and addition is the same as Figure 31.
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Figure 41 continued.
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Figure 42: Hybrid coalescence model cross-sections for triton or helion production at var-
ious angles as a function of lab momentum for C + C reactions compared to experimental
data [13]. Individual contribution labeling and addition is the same as Figure 31.
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Figure 42 continued.
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Figure 43: Hybrid coalescence model cross-sections for alpha production at various angles
as a function of lab momentum for C + C reactions compared to experimental data [13].
Individual contribution labeling and addition is the same as Figure 31.
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Figure 43 continued.
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Figure 44: Same as Fig. 41, except that each frame represents a different value of trans-
verse momentum, p⊥, rather than angle.
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Figure 44 continued.
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Figure 45: Same as Fig. 42, except that each frame represents a different value of trans-
verse momentum, p⊥, rather than angle.
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Figure 45 continued.
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Figure 46: Same as Fig. 43, except that each frame represents a different value of trans-
verse momentum, p⊥, rather than angle.
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Figure 47: Linear (upper panel) and logarithmic (lower panel) lab frame spectral distri-
butions for light ion production calculated for α + C reactions at 1.05 GeV/n and C +
C reactions at 800 MeV/n.
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