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I. Abstract 
 
A recent study of neutron leakage from a uniform cube of aluminum showed some hope of implementing a simple 
diffusion correction for the 3DHZETRN code in spite of an oversimplified neutron scattering dataset. Still, this 
transport of internally generated isotropic sources of neutrons resulted in improved but somewhat inaccurate 
estimates (±20 percent) of neutron leakage in non-hydrogenous materials. This especially occurs for neutrons 
produced by normal incident protons onto a laterally extended but relatively thin geometry, such as that encountered 
in space construction. In the present report, we discuss and improve on this simple approach to correct for this error, 
in addition to introducing an improved neutron scattering dataset (ENDF/B). 
 

II. Introduction 
 

We commissioned a study to better understand the effects of differing nuclear cross sections through a 
sensitivity analysis [Heinbockel et al. 2005, Wilson et al. 2005] and direct comparison [Wilson et al. 2005; 
Heinbockel et al. 2009, 2011a,b] with NASA related Monte Carlo (MC) codes (FLUKA and HETC). It was found 
that the solution is sensitive to errors in the few to several nucleon removal cross sections for heavy projectiles, and 
also errors in the production of neutrons and light ions. Recent 3DHZETRN code development [Wilson et al. 2014a-
c, 2015] used a forward/isotropic representation of the neutron production and scattering cross sections, wherein the 
forward component is represented by a straight-ahead approximation with isotropic components treated as an angle 
dependent first order perturbation (similar to removal/diffusion theory [Wilson and Lamkin 1974]). The generated 
field equation for isotropic neutron sources was solved using a bi-directional (forward/backward) approximation 
over N ray directions, and provided a converging sequence of solutions for increasing number of rays as N =1, 2, 6, 
10, etc. 

This 3DHZETRN solution method agreed with individual MC codes Geant4 version 9.4.6 [Agostinelli et 
al. 2003; Geant4 2012a,b; Koi 2008], FLUKA [Battistoni et al. 2007, Aarnio et al. 1993, Andersen et al. 2004, Fasso 
et al. 2005] and PHITS version 2.64 [Niita et al. 2006; Sato et al. 2006, 2013; Sihver et al. 2007] to a greater degree 
than the MC codes agreed among themselves [Wilson et al. 2015]. This agreement occurred in spite of differing 
nuclear models/databases used in the four different codes [Slaba et al. 2017, Wilson et al. 2015, 2017a]. For 
example, see Fig. 1 comparing various implementations of the Serber [1947] model within MC codes to our recent 
Serber implementation [Wilson et al. 2020]. Advancement in the 3DHZETRN code depended less on improving 
numerical marching procedures and more on improvements to the nuclear database [Wilson et al. 2017a,b, 2020]. 
With recent improvements in the nuclear database [Wilson et al. 2020] we again turn attention to improved transport 
procedures.  
 

 
Fig. 1. Neutron production energy spectrum for 300 MeV protons incident on 27Al.  Results from implementations 

of the Serber model in MC simulation codes are compared to our recent work [Wilson et al. 2020]. 
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In the recent past, we defined neutron leakage factors to isolate the transport properties of a material from 
the production properties allowing a better understanding of the effects of nuclear interaction differences among 
these codes [Wilson et al. 2015, 2017b, 2020; Slaba et al. 2017]. As a result of those studies, it was recognized that 
the bi-directional approximation to low-energy neutron transport underestimated the leakage near lateral boundaries. 
Although reasonable solutions are found for many materials and finite geometries, it was found that solutions along 
long rays nearly parallel to a near bounding surface overestimated the accumulated neutron fluence as a result of 
underestimating the leakage through the near boundary [Wilson et al. 2015]. 

In the present report, we will first re-examine the formalism and consider the impact of including a 
preliminary factor for diffusive losses of isotropic neutron sources within a material. The next section shows results 
of the simple diffusion correction compared to MC results. In the last section, we further look to a more complete 
representation of diffusive losses and improved neutron production using a recent Serber model [Wilson et al. 2020]. 
The more accurate ENDF/B [ENDF 2016] cross sections for neutron scattering are added as well.  
 

III. Neutron Diffusion in 3DHZETRN-V2 
 

The relevant transport equations are the coupled linear Boltzmann equations, derived on the basis of 
conservation principles [Wilson 1977, Wilson et al. 1991] for the differential flux (or fluence) density, ϕj(x,Ω,E), of 
j-type particles in the continuous slowing down approximation, in which atomic/molecular processes are described 
by a stopping power, Sj(E), [Wilson et al. 1991] for each ion type j (vanishes for neutrons) as 
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where B[ϕj(x,Ω,E)] is the Boltzmann operator describing drift in space and energy given as  
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and E is kinetic energy per amu. Equation (1) is to be solved subject to a boundary condition over the enclosure of 
the solution domain. At the present level of development, the double differential interaction cross sections, 
σjk(Ω,Ω',E,Eʹ), are represented by a forward directed quasi-elastic (qe) component, an angle dependent multiple-
production (mp) component [Wilson et al. 2020], plus other processes such as evaporative de-excitation (ev) of the 
target nuclei, and elastic scattering of neutrons (el) represented by 
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The first term of equation (3) represents the quasi-elastic multiple-scattered component with spectrum Fjk,qe(E,Eʹ) 
assumed to travel straight forward. The second term is for those nucleons and other light ions resulting from intra-
nuclear collisions of the quasi-elastic scattered primary particles with the target nuclear material, and are associated 
with broadly dispersed lower-energy particles [Ranft 1980] produced with energy distribution Fjk,mp(E,Eʹ). At each 
energy, the angular dispersion of this term is taken from the Ranft angular factor used in early versions of FLUKA 
as is appropriate for sequences of two-body scatterings within nuclei [Ranft 1980], 
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In equation (4), the production angle is θ = cos-1(Ω•Ωʹ), NR is an energy dependent normalization factor, AT is the 
target nuclear mass number, and the Ranft width factor is 
 

 (0.12 0.00036 ) /R TA El = + .  (5) 
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where fjk,mp(E ') is the Bertini/Ranft branching ratio for multiple production [Wilson et al. 1988a,b, 2017a, 2020], and 
ϕmr(z,E,Eʹ) is the main multiple recoil solution for a primary nucleon of initial energy Eʹ from intra-nuclear transport 
theory [Wilson et al. 1986, 2017b, 2020]. We further note 
 

 , , ,( , ', , ') ( ') ( , ') ( , , )jk mp k abs jk mp R TE E E F E E g E As s q»W W .  (9) 

 
The target evaporative de-excitation spectrum is given by equation (10), where Njk is the evaporation multiplicity 
with parameters from the Bertini model [Wilson et al. 1988a, 1991], 
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where p = 0.1, γ(1+p,Eʹ/) is the incomplete gamma function of the first kind, and  is related to the average energy, 
E, of produced particles according to 
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The average energies are given in Wilson et al. [1991, p. 212]. It is noted that the dependence of equation (11) on E ' 
is weak, allowing quick convergence of the solution for , and in the limit that Eʹ/  ≫ 1 is given as 
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with (p) being the (complete) gamma function. Note, the result of equation (12) can be used in an iterative sense in 
equation (11) for a more accurate evaluation of  as 
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where 0 is the initial estimate given by equation (12). 

The cross sections for elastic scattering of neutrons from target nuclei are discussed on pages 151, 152, and 
367 of Wilson et al. [1991]. Within the straight-ahead version of HZETRN we have used the differential energy 
cross section as given by equation (4.96) in Wilson et al. [1991]. In a prior paper [Clowdsley et al. 2000, 2001], the 
elastic scattering was separated into forward (θL < π/2) and backward hemispheres (θL > π/2) with respect to the lab 
scattering angle θL = cos-1(Ω•Ω'). This provided an initial refinement of the straight-ahead approximation with some 
success [Heinbockel et al. 2011a,b; Slaba et al. 2020], and it should be noted the bi-directional approximation is a 
first correction to the traditional straight-ahead approximation that we have used in HZETRN for many years 
[Wilson and Lamkin 1975, Wilson et al. 1988c].  

Within the bi-directional formalism, the neutron elastic cross section is written as  
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where the forward (f) and backward (b) elastic cross sections can be written as  
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and (x) is the unit step function. In equations (15) and (16), we have used the kinematic relationship between E, E ', 
and L, given by  
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In the present paper, we will further approximate the neutron elastic scattering into forward and isotropic 

terms, consistent with the model of Wilson et al. [2014a-c] previously applied for inelastic neutron production. This 
serves a next order correction to the bi-directional approximation. We now discuss the extension and integration of 
equations (14) - (17) into the forward/isotropic model.  

The double differential cross sections within the transport formalism are approximated by a forward quasi-
elastic component in equation (7), an anisotropic multiple-production component in equations (4) and (9), an 
isotropic target decay component in equation (10), and an angle dependent neutron elastic-scattering component 
(Chew impulse term [Chew, 1951] plus an S-wave) in equations (14) - (17). We further approximate the multiple 
production cross section as a forward (for) plus isotropic (iso) term given as 
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where the mp isotropic term is evaluated by integrating the double differential cross section over the backward 
hemisphere (2B) according to   
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The forward mp term is found by integrating over the forward hemisphere (2F), yielding 
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With the demonstrated success of the bi-directional (forward/backward) approximation [Clowdsley et al. 

2000, 2001, Wilson et al. 2005, Heinbockel et al. 2011a], the solution is similarly divided into forward and isotropic 
related components where the isotropic terms are treated as a first perturbation. The first order forward term, 
( )( , , )for
j Ef Wx , is defined to satisfy 
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The full solution includes the perturbed (prt) field that is coupled to the forward solution through the cross 
section,  
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The coupling between the forward field, ( )( , , )for
j Ef Wx , and the isotropically produced particle field, ( )( , , )prt

j Ef Wx

, appears in the perturbing source term within the equation  
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Once the unperturbed forward fluence, ( )( , , )for
j Ef Wx , is evaluated using equations (21) and (22) for direction Ω0 

over the domain of x and E, one must yet solve for the perturbed fluence, ( )( , , )prt
j Ef Wx , within the target 

configuration given in equation (26) that again involves the troublesome integral over dΩʹ. Note that the last term in 
equation (26) contains the perturbing isotropic source of particles from collisions of the forward propagating fluence 
given as 
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for which the forward fluence, ( )( , , )for
j Ef Wx , is a function of the penetration depth z along the direction Ω0. We 

denote this by replacing ( )
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to the point x. Equation (26) is then rewritten as 
 

 
( ) ( ) ( )

4

( )
0

[ ( , , )] ( , ', , ') ( , ', ') ' ' ( ) ( , , )

[ ( ), , , ] .

prt prt prt
j jk k j jE

k
prt
j

E E E E d dE E E

z E

p
f s f s f

c

¥
= -

+

åò òB W W W W W W

W W

x x x

x

  (28) 

 
Note that equations (27) and (28) also provide a basis for introducing anisotropic source terms as we will do in a 
later section [Wilson et al. 2017a,b, 2020]. Whereas the forward propagating solution has its source fixed by the 
boundary condition, the perturbation solution (having no inbound fluence) is driven by internal (perturbing) sources 
generated by the collisions of the forward propagating inbound fluence, as modified by the forward propagator in 
penetrating to x along direction Ω0. Solving equation (28) is hindered by the angular dependence of the scattering 
term, σjk(Ω,Ω',E,E '), as were the original total field equations (1) and (3) above, and has been alleviated in the past 
by using the forward/backward approximation with some success [Clowdsley et al. 2000, 2001, Wilson et al. 2014b] 
that we will now employ to approximately solve the perturbation equation (28).  

To solve the first order perturbation of equation (28), one must know the fluence, ( )( , , )prt
j Ef Wx , at every x 

from all directions Ω' approaching x from adjacent locations. This perturbed fluence is not known a priori. 
Developing an algorithm to approximately solve the perturbed fluence equation (28) is expedited by separating the 
perturbed fluence into forward and backward propagating components (a bi-directional approximation as we had 
used for many years [Clowdsley et al. 2000, 2001]) at a given direction Ω, and approximating the double differential 
cross sections as having forward/backward components [Wilson et al. 2017a] as 
 

 ( ) ( )( , ', , ') ( , ') ( ') ( , ') ( ')f b
jk jk jkE E E E E Es s d s d» +W W W-W W + W  , (29) 
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where ( )( , ')f
jk E Es is obtained by integrating the full double differential cross section over the forward hemisphere 

relative to Ω,  and ( )( , ')b
jk E Es is obtained by integrating over the corresponding backward hemisphere. Again we 

have assumed that the interaction cross sections can be separated in current usage by a product of angular dependent 
factors and an energy dependent factor as discussed above. It is clear that Ω enters equation (28) as a parameter and 
can be solved along any arbitrary number of directions (rays), allowing construction of a numerical representation of 
( )( , , )prt
j Ef Wx  whose Ω dependence, in part, comes from distance to the boundary, t(Ω) and -t(-Ω), with the 

penetration depth z along Ω0.  
The isotropic perturbation source in equation (28) effectively decouples the incident direction Ω0 from the 

direction of propagation along Ω. The use of the bi-directional approximation in solving equation (28) is based on 
the assumption that losses along the ray Ω are compensated by lateral diffusion from adjacent rays [Wilson et al. 
2014a]. This is especially important for neutrons (and other neutral particles) with minimal atomic interactions 
allowing extensive drift. It is a demonstrated useful assumption in infinite media [Wilson et al. 2014a,b], but the 
approximation leads to overestimated fluence in any finite object. In this later case, it is only those rays within the 
subtended angle of the source, ΔΩ, as seen from the target point that mainly contribute. The remaining rays outside 
this ΔΩ are directed towards the bounding surface of the solution domain and do not contribute to the first order 
perturbation solution at x (but rather leak through the boundary). In the present preliminary evaluation, the 
subtended angle is written as a fraction of the hemisphere F(R,δ0) ≤ 1 as  
 

 
2
0

0 0 2
( , ) 2 ( , )

2
R F R

R

pd
d p dDW = » ,  (30) 

 
where R is the distance along Ω from the target point to the source at x, and δ0 is the minimum distance of the source 
point to the bounding surface in the plane perpendicular to Ω at x. The forward and backward cross sectional 
components for the drifting neutrons are evaluated within this solid angle as 
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In this, the straight forward produced neutrons add fully to the transport process, while the isotropically 

produced neutrons can exhibit significant leakage according to equations (31) and (32). Using equations (30) - (32) 
and the isotropic fraction for non-elastic cross sections in evaluation of equation (28) seems a reasonable 
approximation in most human rated vehicles, leading to an extension of transport of neutrons along an arbitrary ray 
Ω as a solution to the bi-directional (forward/backward) equations [Clowdsley et al. 2000, 2001], 
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The forward and backward produced cross sectional components for neutrons are found by replacing ΔΩ(R,δ0) in 
equations (31) to (34) by ΔΩ of equation (38).  
 

VI. Evaluation of Refined Model 
 

The calculated fluence using the new method for leakage correction (equations (37) and (38)) within the 40 
g/cm2 slab at 35 and 40 g/cm2 depths are shown in Fig. 8 in comparison with the three MC codes (FLUKA, Geant4, 
PHITS) and various versions of 3DHZETRN. All the codes use differing nuclear databases (see Appendix A of 
Wilson et al. [2014a,b, 2020]) that accounts for some of the differences in Fig. 8 (also compare Fig. 1). The curve 
labeled "original" is that obtained using the Bertini/Ranft cross sections without corrections for diffusive losses. The 
"modified" curve has the diffusion factor of equation (38) accounting for losses in the Serber formalism replacing 
the Bertini/Ranft functions. In addition to replacing the Bertini/Ranft cross sections, the "modified (ENDF)" has the 
neutron elastic scattering of the Chew plus S-wave replaced by the ENDF/B neutron scattering data set. In the slab 
geometry being compared in Fig. 8, the neutron leakage only occurs through the front and back faces of the slab. 
The current treatment of diffusive losses in this case appears reasonable.  
 

 
Fig. 8. Neutron fluence induced by the Webber SPE event [Webber 1966] in a 40 g/cm2 slab of aluminum. 

 
 

As a further test of this version of code, we compare the computational procedures where lateral leakage 
plays a role in cube geometry as shown in Fig. 9. Additional leakage is represented by comparing the results in the 
cube to that in spherical geometry (sphere with diameter specified to be the same as cube dimension in Fig. 5) given 
in Fig. 10. It is clear that the qualitative shifts due to increased leakage in the sphere is well represented by the 
modified versions and best represented by the ENDF version of the code. 

While the current form of the diffusion correction is reasonably accurate there are still differences. It is 
clear that at this point of development, the current implementation is in greater agreement with the PHITS result as 
one might have guessed by the cross section differences in Fig. 1 and the fact that the same elastic scattering data set 
(ENDF/B) is used in all four codes. Still the ENDF/B implementation in 3DHZETRN2.1 has approximations noted 
in equation (14) - (16) that are not used in the MC codes. The elastic scattering is presently separated into two 
sectors (forward/backward) and the extension into six or more sectors may further improve the results. 
 

VII. Conclusions 
 

The focus of the present study was neutron production and propagation. The production has been improved 
by a fundamental quasi-elastic and multiple production model through the implementation of a semi-classical Serber 
transport model in nuclear matter. The quasi-elastic process is represented in the transport by a straight-ahead 
approximation, while the multiple production is at broad angles distributed according to the Ranft angular factor. A 
neutron leakage model is implemented through an effective solid angle of the source plane as seen from the 
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evaluation point. Neutron sources outside this angle are assumed to leak through the material boundary of the shield 
object and be lost from further consideration. This simple rule was demonstrated using modern Monte Carlo codes 
in the same source geometry and mass distribution.  
 
 

 
Fig. 9. Diffuse corrected fluence (modified) induced by the Webber SPE event [Webber 1966]  in a 40 g/cm2 

aluminum cube at two depths according to the revised formalism. Also with ENDF/B elastic data set. 
 
 

 
Fig. 10. Diffuse corrected fluence (modified) induced by the Webber SPE event [Webber 1966]  in a 40 g/cm2 

aluminum sphere at two depths according to the revised formalism. Also with ENDF/B elastic data set. 
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