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Nomenclature

Note: Units are used in which c = ~ = 1.

c speed of light
~ Planck constant divided by 2π
l, lab as a subscript, refers to lab frame
c, cm as a subscript, refers to center of mass frame
λij flux factor for masses i and j
Ei energy of particle i
pi 3-momentum of particle i
pi 4-momentum of particle i
qj 4-momentum of virtual particle j
M invariant amplitude
g coupling constant
g13x coupling constant between particles 1, 3 and exchange particle x
gπNN pion-nucleon coupling constant
gπN∆ pion-nucleon-delta coupling constant
gγNN electromagnetic coupling constant
mj mass of particle j
m∆ mass of the ∆ particle
mπ mass of the pion
mx mass of the exchange particle (e.g. x = π, the pion)
mp mass of the proton
mN mass of a nucleon
Γ total decay width or rate
Γ(4→ 56) partial decay width for exclusive decay 4→ 56
dΓ differential decay width
S statistical factor
σ total cross section
σd total cross section due to direct term
σe total cross section due to exchange term
σi total cross section due to interference term
dσ infinitesimal element of differential cross section
dσ/dt invariant differential cross section
dσ/dΩ angular distribution
dσ/dEi spectral distribution in terms of energy of particle i
dσ/dTj spectral distribution in terms of kinetic energy of particle j
N a nucleon
θ3l lab angle of particle 3 with respect to particle 1
θ4c cm angle of particle 4 with respect to particle 1
θ3peak maximum angle of particle 3 with respect to particle 1
s, t, u mandelstam variables
t0 value of variable t at θ = 0
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tπ value of variable t at θ = π
u0 value of variable u at θ = 0
uπ value of variable u at θ = π
st = sthreshold, value of variable s at the reaction threshold
π0 the neutral pion
∆+ the ∆ baryon of charge +1
γ the photon
GeV mass energy unit, one billion electron volts
mb millibarns
pb picobarns
sr steradian, unit of solid angle
dΦ2 phase space factor for 2 particle final state
dΦn phase space factor for n particle final state
dLips Lorentz invariant phase space factor
τ mean lifetime
OPE one pion exchange

Σm2 ≡
∑4

i=1m
2
i ≡ m2

1 +m2
2 +m2

3 +m2
4
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Abstract

A one pion exchange scalar model is used to calculate differential and total cross sec-
tions for pion production through nucleon-nucleon collisions. The collisions involve
intermediate delta particle production and decay to nucleons and a pion. The model
provides the basic theoretical framework for scalar field theory and can be applied to
particle production processes where the effects of spin can be neglected.

1 Introduction

An effort is underway to include meson production in the space radiation transport code known
as HZETRN. Previous work used high energy meson production models based on scaling [1,
2, 3, 4, 5]. These models yield nucleon, pion, and other particle production cross sections.
Basing the transport codes instead on fundamental models of hadronic interactions holds out
the prospect of providing unified and more versatile descriptions of the interactions of interest.
The quark - gluon model is the most fundamental, but its complexities are such that calculations
are more of a qualitative kind [6]. The present work is based on the meson exchange model of
hadronic (strong) interactions [6]. The model may be considered an effective quantum field
theory in which the exchange particle is the pion. In the model’s simplest form, all particles,
nucleons and exchange particles alike, are treated as scalar, spin zero particles. This version
of the model makes no distinction between proton and neutron other than by mass, but since
the masses are nearly equal, the mass of the proton is used throughout as the nucleon mass.
As a further simplification, only the pion is used as the exchange particle. This scalar one
pion exchange (OPE) model is used to determine the amplitudes, to first and second order in
coupling constants, of ∆ decays and nucleon - nucleon (NN) interactions producing 2 - body
and 3 - body final states. The amplitudes are inserted into standard formulas derived from
Fermi’s golden rule to give differential decay widths for ∆→ Nπ and differential cross sections
for the elastic NN → NN and inelastic NN → N∆ interactions. Manipulation of the phase
space factor in the differential cross section leads to an expression for the invariant distribution,
a differential cross section that is a function of Mandelstam variable t. Changes of variable
lead to angular distributions in the center of momentum (cm) frame and angular and spectral
distributions in the lab frame. Of the various distributions, the invariant distribution reveals
itself to have a particularly simple form. Allowed ranges of variables are found, and integration
over the variables yields total cross sections.

2 Scattering for 2 - body final states

In 2 - body decay, the lowest order term in the scattering matrix has one vertex, and thus is
first order in the coupling constant gπNN . In 2 - body scattering, the lowest order term in the
scattering matrix has two vertices, and thus is second order in the coupling constant. 2 - body
reactions will be represented as 1 + 2 → 3 + 4, where the numbers represent particles. Both
decay and scattering processes have a 2 - body final state. In this section, the basic formalism
for calculating 2 - body final state cross sections is presented.

1



2.1 Scattering amplitude from Feynman rules

In this subsection, it will be shown how to generate a scattering amplitude from a set of Feynman
rules. This amplitude is the basic input to physical observables, such as cross sections and decay
rates. The Feynman rules used below apply to a set of particles that are scalars. Griffiths [7]
labels the particles as A,B,C each with different masses. The exchange particle is particle C.
We consider the Feynman rules for the scalar ABC theory of Griffiths [7]. The rules of Peskin
and Schroeder [8] and Griffiths [7] are the same except that Griffiths has rules leading to the
invariant amplitude −iM, whereas Peskin and Schroeder have the rules giving +iM. This
discrepancy is due to different definitions relating the S-matrix to the invariant amplitude. We
follow the convention of Peskin and Schroeder in the present work. Another difference is that
Peskin and Schroeder always include a factor iε in the denominator of propagators. We include
this factor in the form imΓ in the case of ∆ decay to account for the decay width. The Feynman
rules are now discussed. The quantity

iM(2π)4δ4(p1 + p2 − p3 − p4 · · · − pn) , (1)

is given by the following rules [7, 8] for scalar ABC theory [7].

1. Notation. Label the incoming 4-momenta as p1 and p2, and the outgoing momenta as
p3, p4 · · · pn. Label the internal 4-momenta as q1, q2 . . . . Put arrows on each line to conserve
current, which identify incoming and outgoing particles.

2. Coupling constant. For each vertex, write down a factor

−ig

where g is the coupling constant. (In our simple scalar theory, this has dimensions of GeV,
but in realistic theories g is always dimensionless. In the theory of Quantum Electrody-
namics, g is the fine structure constant α ∼= 1/137.)

3. Propagator. For each internal line, write a factor

i

q2
j −m2

j + iε

where qj is the 4-momentum of the internal particle and mj is its mass. Note that q2
j 6= m2

j ,
because the internal particle is virtual and does not obey the Einstein relation, p2 = m2.
We say that such a particle is off mass shell. Also, as mentioned above, the factor iε is
omitted except in the case where decay width is significant.

4. Conservation of 4-momentum. At each vertex, write a delta function of the form

(2π)4δ4(k1 + k2 + k3)

where the k′s are the 4-momenta flowing into the vertex. If the particle flows out, then k
should have a negative sign in front.

2



5. Integrate over internal momenta. For each internal line, write down a factor

1
(2π)4

d4qj

and integrate over all internal momenta.

2.2 Decay width from Feynman rules

Most baryons decay into a final set of particles. Therefore, it is important to be able to describe
this decay. This subsection shows how to calculate the decay width from Feynman rules. The
Feynman rules may be used to calculate the decay width of particle 3 decaying, as in the reaction

3→ 1 + 2 . (2)

The Feynman diagram for this reaction is shown in figure 1. This diagram is particularly easy
to evaluate since there are no internal lines. Applying the Feynman rules to the lowest order
diagram (see Griffiths [7]), gives

iM(2π)4δ4(p1 − p2 − p3) = (−ig)(2π)4δ4(p1 − p2 − p3) , (3)

and canceling terms gives

M = −g . (4)

 p2 p1

 p3

-ig

Figure 1: Lowest order contribution to the decay 3→ 1 + 2.

Step 5 in section 2.1 is not needed because there are no internal particles for the first order
decay. Substituting equation (4) into equation 6.30 of Reference [7] gives

Γ =
1
τ

=
g2
πN∆S

16πm3
3

√
m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 , (5)

where g = gπN∆.

3



2.3 Scattering via massive exchange particle

In this section, we consider scattering by means of an exchange particle with mass m > 0.
Since the exchange particle is a virtual particle, its mass is allowed to be off-shell. In the case
of the pion, this means that the square of the 4-momentum transferred by the virtual pion
t = (p1 − p3)2 is in general not equal to the squared mass of a real pion, t 6= m2

π. In treating
the reaction NN → N∆, the ABC theory is simply expanded to include two types of vertices,
along with their respective coupling constants: NNπ and N∆π.

2.3.1 Amplitude

Consider the reaction

1 + 2→ 3 + 4 ,

with the diagram shown in figure 2. The particles have masses m1,m2,m3 and m4, respectively,
and the mass of the intermediate exchange particle is mx. Applying the Feynman rules to the
lowest order diagram (see Reference [7]), gives the direct amplitude as

iMd(2π)4δ4(p1 + p2 − p3 − p4)

= (−i)2g13xg24x

∫
d4q

(2π)4

i

q2 −m2
x

(2π)4δ4(p1 − p3 − q)(2π)4δ4(q + p2 − p4)

= (−i)2g13xg24x
i

(p1 − p3)2 −m2
x

(2π)4δ4(p1 − p3 + p2 − p4) , (6)

and canceling terms gives

Md = −g13xg24x

t−m2
x

, (7)

where t ≡ (p1 − p3)2.

 p2 p1

 p3  p4

-ig-ig
  q

Figure 2: Lowest order contribution to the reaction 1 + 2→ 3 + 4.

The exchange term is shown in figure 3 and is given by

Me =
g14xg23x

(p1 − p4)2 −m2
x

= +
g14xg23x

u−m2
x

, (8)
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where u ≡ (p1 − p4)2. The plus sign of the exchange term in equation (8) is consistent with the
scalar theory in which all particles are spin 0 bosons with wave functions that commute. Had
spin been considered, then for the case of nucleon scattering, in which the nucleons are fermions
with spin 1/2, the exchange term in equation (8) would have taken on a minus sign reflecting
the fact that the wave functions of the two fermions anti-commute [8] (p. 119).

 p2 p1

 p3
 p4

-ig-ig
 q

Figure 3: Exchange term of reaction 1 + 2→ 3 + 4.

For the reaction NN → NN , the direct and exchange terms are physically indistinguish-
able in so much as the energies and exit angles of a final state particle are the same for both
terms. According to the rules of quantum mechanics, the probability (i.e. cross section) to
produce the final state particles is determined by first adding the amplitudes of the two terms,
and then squaring the complete amplitude, (rather than the reverse, as would be the case for
distinguishable final states [9] (p. 10).

Table 1: Values of t and u for θ3lab = 0.4

E3lab(GeV) t(GeV2) u(GeV2)

2.98 - 2.07 - 3.19

1.30 - 5.23 - 0.035

For each energy, there is a unique value of t that determines that energy. This value of t
represents the direct term. There is also a unique value of u that determines that energy. See
Table 1. This value of u represents the exchange term. The invariant amplitude M consists of
the sum of direct (t-channel) and exchange (u-channel) terms and is finally

M≡Md +Me = −g13xg24x

t−m2
x

+
g14xg23x

u−m2
x

. (9)

5



The Mandelstam variables s, t, u satisfy

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 =
4∑
i=1

m2
i ≡ Σm2 , (10)

where s ≡ (p1 + p2)2.

2.3.2 Invariant t distribution

Final formulas for the Lorentz invariant angular cross sections will now be presented. Reference
[10] gives

dσ

dt
=

S
16πλ12

|M|2 =
S

16πλ12

[
g13xg24x

t−m2
x

+
g14xg23x

u−m2
x

]2

, (11)

with

λij ≡ (s−m2
i −m2

j )
2 − 4m2

im
2
j . (12)

The direct, exchange, and interference terms are

dσd
dt

=
S

16πλ12
|Md|2 =

S
16πλ12

g2
13xg

2
24x

(t−m2
x)2

, (13)

dσe
dt

=
S

16πλ12
|Me|2 =

S
16πλ12

g2
14xg

2
23x

(u−m2
x)2

, (14)

dσi
dt

=
S

16πλ12
|Mi|2 =

S
16πλ12

2MdMe =
S

16πλ12

2g13xg24xg14xg23x

(t−m2
x)(u−m2

x)
. (15)

For future purposes, we write these more simply as

dσd
dt

=
K

(t−m2
x)2

, (16)

dσe
dt

=
K

(u−m2
x)2

, (17)

dσi
dt

=
2K

(t−m2
x)(u−m2

x)
, (18)

with the definition

K ≡ K(s) ≡ S
16πλ12

g2
13xg

2
24x =

S g2
13xg

2
24x

16π[(s−m2
1 −m2

2)2 − 4m2
1m

2
2]
, (19)

which assumes

g23x ≡ g13x , (20)
g24x ≡ g14x . (21)

6



This equivalence of coupling constants between the direct and exchange terms assumes particles
1 and 2 are the same. This is the case for the following discussions in which the particles are
both nucleons. K(s) has a singularity when (s−m2

1 −m2
2)2 − 4m2

1m
2
2 = 0, and it will turn out

that this gets canceled by other terms. See the note following equation (111).

Elastic scattering (e.g. NN → NN)

Consider the example of the reaction NN → NN where the exchange particle is a pion,

g13x = g24x = gNNπ ≡ gπNN , (22)
m1 = m2 = m3 = m4 ≡ mN , (23)
mx = mπ ≡ m , (24)
S = 1/2 , (25)

which gives

λ12 = s(s− 4m2
N ) , (26)

and

K =
S

16πλ12
g2

13xg
2
24x =

g4
πNN

32πs(s− 4m2
N )

. (27)

Inelastic scattering (e.g. NN → N∆)

Consider the example of the reaction NN → N∆ where the exchange particle is a pion,

g13x = gNNπ ≡ gπNN , (28)
g24x = gN∆π ≡ gπN∆ , (29)
m1 = m2 = m3 ≡ mN , (30)
m4 ≡ m∆ , (31)
mx = mπ ≡ m , (32)
S = 1 , (33)

which gives

λ12 = s(s− 4m2
N ) , (same as elastic case), (34)

and

K =
S

16πλ12
g2

13xg
2
24x =

g2
πNNg

2
πN∆

16πs(s− 4m2
N )

. (35)

7



2.3.3 Spectral distribution in the lab frame

The spectral distributions dσ/dE4l and dσ/dT4l are obtained from the invariant distribution
(11) by expressing t and u in terms of E4l, the energy of particle 4 in the lab frame, or in terms
of T4l, the kinetic energy. Expanding

t = (p2 − p4)2 , (36)

and noting that in the lab frame E2 = m2 and p2 = 0, gives

t = m2
2 +m2

4 − 2m2E4l (37)

and

u = Σm2 − s−m2
2 −m2

4 + 2m2E4l , (38)

with

Σm2 ≡ m2
1 +m2

2 +m2
3 +m2

4 . (39)

Both t and u are expressed in terms of T4l by the substitution E4l = T4l +m4, as in

t = m2
2 +m2

4 − 2m2(T4l +m4) , (40)
u = Σm2 − s−m2

2 −m2
4 + 2m2(T4l +m4) . (41)

The range of possible values of E4l and T4l are bound by their minimum and maximum values,
which are in turn found by inverting the preceding formulas [10] and substituting t0 and tπ for t
from equation (56), which is listed later in this paper. The above formulas for t and u can now
be used to generate dσ/dE4l and dσ/dT4l from dσ/dt and dσ/du.

2.3.4 Angular distribution in the cm frame

The angular distribution is formed by substituting the expression for M given by equation (9)
[10] and by expressing t and u in terms of angle θ. For a 2 - body final state, this is done
by writing the momenta p3 and p4 in terms of the initial energy in the form of s and λ. The
denominator in the direct term in equation (7) contains

t ≡ (p4 − p2)2

= m2
4 +m2

2 − 2
√

p2
4 +m2

4

√
p2

2 +m2
2 + 2|p4||p2| cos θ

= m2
4 +m2

2 − 2
√

p2
f cm +m2

4

√
p2
i cm +m2

2 + 2|pf cm||pi cm| cos θ (cm frame)

= m2
2 +m2

4 +
1
2s

[
−
√

(λ12 + 4sm2
2)(λ34 + 4sm2

4) +
√
λ12λ34 cos θ

]
, (42)
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where pi cm = p1 = −p2 and pf cm = p3 = −p4 are the initial and final 3-momenta of the
particles in the cm frame. The denominator in the exchange term in equation (8) contains

u ≡ (p3 − p2)2

= m2
3 +m2

2 − 2E3E2 + 2p3.p2

= m2
3 +m2

2 − 2E3E2 − 2p4.p2 (because p3 + p4 = 0 in cm frame)

= m2
3 +m2

2 − 2
√

p2
4 +m2

3

√
p2

2 +m2
2 − 2|p4||p2| cos θ (in cm frame)

= m2
3 +m2

2 − 2
√

p2
f cm +m2

3

√
p2
i cm +m2

2 − 2|pf cm||pi cm| cos θ (in cm frame)

≡ Σm2 − s− t , (43)

where θ is the angle between p2 and p4 in the cm frame. The angular distribution becomes [10](
dσ

dΩ4

)
cm

=
S

64π2s

√
λ34

λ12
|M|2

=
S

64π2s

√
λ34

λ12

[
g12xg34x

t−m2
x

+
g12xg34x

u−m2
x

]2

, (44)

with the definitions

t ≡ m2
2 +m2

4 +
1
2s

[
−
√

(λ12 + 4sm2
2)(λ34 + 4sm2

4) +
√
λ12λ34 cos θ

]
, (45)

and

u ≡ Σm2 − s− t . (46)

In the cm frame, the angular distributions of particles 3 and 4 are equivalent [10].

dσ/dΩ3c ≡ dσ/dΩ4c . (47)

Comparing equation (11) with equations (44) and (45), the differential cross sections take a
simpler form when written in terms of the Mandelstam variables s, t and u, instead of the
momentum |p| and angle θ.

2.3.5 Angular distribution in the lab frame

The angular distribution in the lab frame may be expressed in terms of the angular distribution
in the cm frame [10],

dσ

dΩ3l
=

4m2s√
λ12λ34

|p1l||p3l|
|E1l +m2 − |p1l|

|p3l|E3l cos θ13l|
dσ

dΩ13c

=
4m2s√
λ12λ34

2
√
E2

1l −m2
1 (E2

3l −m2
3)3/2

|E3l(m2
1 +m2

2 +m2
3 −m2

4 + 2E1m2)− 2m2
3(E1 +m2)|

dσ

dΩ13c
. (48)
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For computational purposes, both E3l and dσ/dΩ13c, which contain t, may be written as func-
tions of θ13l and the energy of particle 1 in the lab frame E1l (instead of s), by using the following
relations for s(E1l) and t(E1l, θ3l),

s(E1l) = m2
1 +m2

2 + 2E1m2 , (49)

and

t(E1, θ3l) = m2
4 −m2

2 + 2m2[E3(E1, θ3l)− E1l] . (50)

The expression for s is found by expanding s = (p1l + p2l)2 and noting that in the lab frame
p2 = 0 and E2l = m2. The expression for t is found, following reference [10], by expanding
t = (p2−p4)2 and eliminating E4l using conservation of energy, E4l = E1l +m2−E3l. Then [10]

E3l(E1l, θ3l) =
ab±

√
E2

1l −m2
1 cos(θ3l)

√
a2 −m2

3[b2 − (E2
1l −m2

1)cos2(θ3l)]

b2 − (E2
1l −m2

1)cos2(θ3l)
, (51)

where

a =
s+m2

3 −m2
4

2
, (52)

and

b = E1l +m2 . (53)

Note the double valued nature of the energy expression (51). A discussion of how to handle this
in computations is discussed in reference [10].

2.3.6 Singularities

The differential cross sections in equations (16), (17), and (18) have singularities at

t = m2 , (54)

and

u = m2 , (55)

where m ≡ mx. In this section, we show that these singularities are never encountered for
physical values of t and u. The formulas derived in reference [10] for the extreme values of t
denoted as t0 = t(θ = 0) and tπ = t(θ = π), are

t0(tπ) =
1
4s

[
(m2

1 −m2
2 −m2

3 +m2
4)2 − (

√
λ12 ∓

√
λ34)2

]
. (56)

The symbol ∓ means that a negative sign is used for t0 and a positive sign is used for tπ. A
useful result is the following equation.

u0 − tπ = uπ − t0 =
1
s

(m2
1 −m2

2)(m2
3 −m2

4) . (57)
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Thus, for the reaction NN → anything, we have

u0 = tπ , (58)
uπ = t0 . (59)

We now consider the two cases of elastic and inelastic scattering.

Elastic scattering (e.g. NN → NN)

For the case of m1 = m2 = m3 = m4 ≡ mN , the threshold value of s, denoted st is

st = 4m2
N . (60)

The equal masses case gives

λ12 = λ34 = s(s− st) = s(s− 4m2
N ) . (61)

By equation (56),

t0 = 0 (62)

and

tπ = st − s = 4m2
N − s . (63)

Clearly, t0 has a fixed value, but the value of tπ depends on s. The minimum value of s is
st = 4m2

N and so the minimum and maximum values of tπ are

tmin
π (s→∞) = −∞ (64)

and

tmax
π (s = st) = 0 , (65)

and so the range of tπ is

tπ : −∞→ 0 . (66)

Clearly, the singularity value t = m2 is never encountered when t ranges between t0 and tπ.
Now, consider the singularity at u = m2, where s + t + u = m2

1 + m2
2 + m2

3 + m2
4 = 4m2

N = st.
Thus, u = 4m2

N − s− t = st − s− t. The extremum values of u can be obtained with equation
(59). Thus, the extremum values of u are the (opposite) extremum values of t. Given that the
singularity value t = m2 is never encountered when t ranges between t0 and tπ, it follows that
the singularity value u = m2 is never encountered when u ranges between u0 and uπ.
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Inelastic scattering (e.g. NN → N∆)

For the case of m1 = m2 = m3 ≡ mN and m4 ≡ m∆, the threshold value of s, denoted st is

st = (mN +m∆)2 (67)

and

λ12 = s(s− 4m2
N ) (same as elastic case) (68)

and

λ34 = (s−m2
N −m2

∆)2 − 4m2
Nm

2
∆ . (69)

One uses equation (56) to obtain

t0(tπ) =
1
2s

[
s(m2

∆ + 3m2
N − s)±

√
s(s− 4m2

N )
√

(s−m2
N −m2

∆)2 − 4m2
Nm

2
∆

]
(70)

The symbol ± means that a + sign is used for t0 and a − sign is used for tπ. The minimum and
maximum values of t0 are

tmin
0 (s = st) = mN (mN −m∆) (71)

and

tmax
0 (s→∞) = 0 , (72)

giving the range of t0 as

t0 : mN (mN −m∆)→ 0 . (73)

Note that if we had mN in place of m∆, these results reduce to equation (62). The minimum
and maximum values of tπ are

tmin
π (s→∞) = −∞ (74)

and

tmax
π (s = st) = mN (mN −m∆) = tmin

0 , (75)

giving the range of tπ as

tπ : −∞→ mN (mN −m∆) . (76)

If we had mN in place of m∆, these results reduce to equations (64), (65), and (66). Clearly,
the singularity value t = m2 is never encountered when t ranges between t0 and tπ.

Now consider the singularity at u = m2. The extremum values of u can be obtained with
equation (59). Thus, the extremum values of u are the (opposite) extremum values of t. Given
that the singularity value t = m2 is never encountered when t ranges between t0 and tπ, then
the singularity value u = m2 is never encountered when u ranges between u0 and uπ.
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2.4 Scattering via zero-mass exchange particle

In this section, we consider scattering by means of an exchange particle with mass m = 0. By
setting the coupling constant g = gγNN = α ' 1/137, the exchange particle becomes the photon,
except that in keeping with the scalar model, the photon is treated not as a spin 1 particle,
but as a scalar. In the next section, both the elastic NN → NN (Rutherford) and inelastic
NN → N∆ cases are examined numerically. The formalism developed in the preceding sections
gives the well known differential cross section for Rutherford scattering, which is characterized
by g13x = g24x ≡ g, the exchange particle mass mx = 0, and in the general case m1 = m3

and m2 = m4 (i.e. elastic scattering). In our special case, for simplicity we make the further
restriction m1 = m2 ≡ M , so that, in the cm frame, |p1| = |p2| = |p3| = |p4| ≡ |pcm| ≡ |p|.
Also, E1 = E2 = E3 = E4 ≡ E. Thus,

t ≡ (p4 − p2)2 = m2
4 +m2

2 − 2E4E2 + 2p4 · p2

= 2M2 − 2E2 + 2p2 cos θ
= 2(−p2 + p2 cos θ) = −2p2(1− cos θ)

= − λ

2s
(1− cos θ) , (77)

where, by equation (12),

λ ≡ λ(s,M2,M2) = s(s− 4M2) = 4sp2 . (78)

Also,

u ≡ (p3 − p2)2 = m2
3 +m2

2 − 2E3E2 + 2p3 · p2

= m2
3 +m2

2 − 2E3E2 − 2p4 · p2

= − λ

2s
(1 + cos θ) . (79)

Thus, by equation (9), the invariant amplitude, with mx = 0, is

M = −g2

[
1
t

+
1
u

]
= −g2

[
1

(p4 − p2)2
+

1
(p3 − p2)2

]
=

2sg2

λ
(

1
1− cos θ

+
1

1 + cos θ
)

=
4sg2

λ sin2 θ

=
4g2

(s− 4M2) sin2 θ
. (80)

Equation (44) becomes

dσ

dΩcm
=

S
64π2s

|M|2 =
S

64π2s

16g4

(s− 4M2)2 sin4 θ
, (81)
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giving the Rutherford formula (with S = 1/2!) as

dσ

dΩcm
=

S
64π2s

|M|2 =
g4

8π2s(s− 4M2)2 sin4 θ
. (82)

This agrees with Griffiths [7] (equation 6.54), as can be seen using s = 4E2 and p2 = λ
4s =

s(s−4M2)
4s = 1

4(s−4M2). The classical and quantum mechanical results for dσ/dΩ exhibit several
differences (compare Griffiths [7] equation 6.54 with p. 194). The classical result for Rutherford
scattering typically encountered (e.g. Griffiths [7] (p. 194), or Goldstein [11] (equation 3.102)
depends on θ/2 rather than θ. This difference of a factor of 2 is due to the fact that the classical
calculation is usually performed in the lab (target) frame, whereas the present calculation is
performed in the cm frame. In the non-relativistic limit, for the case of all particles having the
same mass, we have precisely θlab ≡ θcm/2. See Marion [12] (equation 9.71).

The classical and quantum mechanical results for dσ/dΩ also differ by an overall factor of
2. This well known difference arises from the quantum mechanical description of a particle as a
wave packet, versus the classical description of particles as having finite extent (see Bohm [13]
sections 17 and 49 for a discussion). As expected, the Rutherford formula diverges at s = 0
and s = 4M2, just as the formula of Griffiths [7] which diverges at E = 0 or p2 = 0. Since
s ≡ (p1 + p2)2, the value of s in the cm frame is s = (E1 +E2)2, which has a minimum value at
s = 4M2 for m1 = m2 ≡ M . Thus, the singularity at s = 4M2 is the same as the singularity
at p2 = 0. As for the case s = 0, this value is never reached because the minimum value of s
is 4M2. Similarly, the value E = 0 is never reached because the minimum value of E is M . As
mentioned in the previous section, the equation for the angular distribution is much simpler if
Mandelstam variables are used instead of angle,

dσ

dΩcm
=

Sg4

64π2s
(
1
t

+
1
u

)2 , (83)

with u = 4M2 − s− t.

2.5 Total cross section

In this subsection the previous differential cross sections will be integrated to form total cross
sections. The total cross sections are obtained by integrating [10]

σ =
∫ t0

tπ

dt
dσ

dt
(84)

or

σ =
∫ uπ

u0

du
dσ

du
. (85)

The expressions for the direct, exchange, and interference t distributions were given in equations
(16), (17) and (18). The total cross sections can be obtained with straightforward analytic
integration. The direct cross section is

σd =
∫ t0

tπ

dt
K

(t−m2)2
= −K

[
1

t−m2

]t0
tπ

, (86)
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giving

σd = K

(
1

tπ −m2
− 1
t0 −m2

)
. (87)

The exchange cross section is

σe =
∫ t0

tπ

dt
K

(u−m2)2

=
∫ t0

tπ

dt
K

(Σm2 − s− t−m2)2
=
∫ t0

tπ

dt
K

(t+ s− Σm2 +m2)2

= −K
[

1
t+ s− Σm2 +m2

]t0
tπ

= K

(
1

tπ + s− Σm2 +m2
− 1
t0 + s− Σm2 +m2

)
= K

(
1

tπ −m2
− 1
t0 −m2

)
, (88)

giving

σe = σd . (89)

Thus, the direct and exchange total cross sections are equal. Note that this result is more easily
obtained by direct integration of the u variable. Since du = −dt, and using (59), we have

σe =
∫ uπ

u0

du
K

(u−m2)2

=
∫ t0

tπ

dt
K

(u−m2)2
.

= σd (90)

Now consider integration of the interference term given in equation (18).

dσi
dt

=
2K

(t−m2)(u−m2)
=

2K
(t−m2)(−t+ Σm2 − s−m2)

=
2K

−t2 + t(Σm2 − s) +m2(s− Σm2 +m2)
. (91)

The needed integral is of the form [14]∫
dx

ax2 + bx+ c
=

2√
4ac− b2

tan−1

(
2ax+ b√
4ac− b2

)
, for b2 − 4ac < 0,

=
1√

b2 − 4ac,
log

(
2ax+ b−

√
b2 − 4ac

2ax+ b+
√
b2 − 4ac

)
, for b2 − 4ac > 0,

=
−1

ax+ 1
2b

, for b2 − 4ac = 0. (92)
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Note that if b = 0, the result of equation (92) reduces to the correct form for both cases of the
tan−1 or log. However, if a = 0 or c = 0, the result of equation (92) does not reduce to the
correct form. In fact, for a = 0, we have [14]∫

dx

bx+ c
=

1
b

log (bx+ c) , (93)

and for c = 0 we have [14] ∫
dx

ax2 + bx
=

1
b

log
(

x

ax+ b

)
. (94)

For our case, we have

a = −1 b = Σm2 − s c = m2(s− Σm2 +m2) , (95)

and we never come across the situation where a = 0 or c = 0. The minimum value of c occurs
at s = sthreshold = (m3 +m4)2. Thus,

cmin = m2[(m3 +m4)2 −m2
1 −m2

2 −m2
3 −m2

4 +m2]
= m2 − (m1 −m2)2 + 2(m3m4 −m1m2) , (96)

but since we always have m3m4 ≥ m1m2, then

cmin ≥ m2 − (m1 −m2)2 , (97)

giving

m = mπ > |m1 −m2| => c > 0. (98)

Thus, we can conceivably run across the case where c = 0. Now we can have b = 0 at s = Σm2

but that is no problem because, in that case, the integral above reduces to the correct form.
Given that the result depends on the value of b2− 4ac, we need to evaluate this quantity for the
expression in equation (91), with the result that

b2 − 4ac = (Σm2 − s)2 + 4m2(s− Σm2 +m2) . (99)

Define s̄ ≡ s− Σm2 +m2 so that s− Σm2 = s̄−m2, to give

b2 − 4ac = (s̄−m2)2 + 4m2s̄ = s̄2 + 2m2s̄+m4 ,

= (s̄+m2)2 (100)

which finally gives

b2 − 4ac = (s− Σm2 + 2m2)2 , (101)

which, being a square, always gives

b2 − 4ac ≥ 0 . (102)
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Following a similar analysis for c above we have

(b2 − 4ac)min = [(m3 +m4)2 −m2
1 −m2

2 −m2
3 −m2

4 + 2m2]2

= [2m2 − (m1 −m2)2 + 2(m3m4 −m1m2)]2 , (103)

but since we always have m3m4 ≥ m1m2, then

(b2 − 4ac)min ≥ [2m2 − (m1 −m2)2]2 , (104)

giving
√

2m > |m1 −m2| => b2 − 4ac ≥ 0. (105)

Thus, we can conceivably run across the case where b2−4ac = 0. The following analysis assumes
that c 6= 0 and b2 − 4ac 6= 0. The total interference cross section is given by

σi =
∫ t0

tπ

dt
2K

−t2 + t(Σm2 − s) +m2(s− Σm2 +m2)

=
2K

s− Σm2 + 2m2

[
log

t+ s− Σm2 +m2

t−m2

]t0
tπ

, (106)

which becomes

σi =
2K

s− Σm2 + 2m2

[
log

(tπ −m2)(t0 + s− Σm2 +m2)
(t0 −m2)(tπ + s− Σm2 +m2)

]
. (107)

Elastic scattering (e.g. NN → NN)

For the reaction NN → NN , we obtain

t0 = 0 , (108)
tπ = 4m2

N − s , (109)

which, upon substitution into equation (87), gives

σd = K

(
1
m2
− 1
s− 4m2

N +m2

)
=

g4
πNN

32πs(s− 4m2
N )

(
1
m2
− 1
s− 4m2

N +m2

)
, (110)

which simplifies to

σd =
g4
πNN

32πm2s(s− 4m2
N +m2)

. (111)
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Note that the minimum value of s is st ≡ sthreshold = (m3 +m4)2 = 4m2
N and so the cross section

has no singularities. The largest value of σ occurs at s = st.

σd(s→ st) =
g4
πNN

32πm4
πst

=
g4
πNN

128πm4
πm

2
N

=
1

8πm2
N

(
gπNN
2mπ

)4

=
S

4πm2
N

(
gπNN
2mπ

)4

. (112)

The other important limit is

σd(s→∞) = 0. (113)

Recall (89), which showed that the direct and exchange total cross sections are the same. The
sum of direct and exchange maximum values is

σmax
d + σmax

e =
2S

4πm2
N

(
gπNN
2mπ

)4

=
1

4πm2
N

(
gπNN
2mπ

)4

. (114)

The interference cross section is given by substitution into equation (107),

σi =
2K

s− 4m2
N + 2m2

π

log
[

(4m2
N − s−m2

π)(s− 4m2
N +m2

π)
−m2

π(4m2
N − s+ s− 4m2

N +m2
π)

]
=

4K
s− 4m2

N + 2m2
π

log
(
s− 4m2

N +m2
π

m2
π

)
, (115)

which is

σi =
g4
πNN

8πs(s− 4m2
N )(s− 4m2

N + 2m2)
log

s− 4m2
N +m2

m2

= 4σd m2 s− 4m2
N +m2

s− 4m2
N + 2m2

1
s− 4m2

N

log
s− 4m2

N +m2

m2
. (116)

This cross section has a potential threshold singularity at s = st = 4m2
N , which comes from

the term K ≡ K(s) ≡ S
16πλ12

g2
13xg

2
24x = g4πNN

32πs(s−4m2
N )

The singularity was canceled out in our
previous expression for σd in equations (110) and (111). Clearly, we need to evaluate the term

18



1
(s−st) log s−st+m2

m2 near s = st. Consider the following Taylor series expansion [14] (p. 111)

1
(s− st)

log
(
s− st +m2

m2

)
=

1
(s− st)

log
(
s− st
m2

+ 1
)

=
1

m2x
log(1 + x) with x ≡ s− st

m2

=
1

m2x

(
x− x2

2
+
x3

3
− x4

4
+ · · ·

)
=

1
m2

(
1− x

2
+
x2

3
− x3

4
+ · · ·

)
, (117)

which gives

lim
s→st

1
(s− st)

log
(
s− st +m2

m2

)
=

1
m2

. (118)

Substituting into the above expression gives the interference cross section at threshold s = st,

σmax
i = σi(s→ st) = 2σmax

d

= σmax
d + σmax

e , (119)

which is an interesting result because it shows that in the low energy limit, the interference term
dominates. The other important limit is

σi(s→∞) = 0 . (120)

Inelastic scattering (e.g. NN → N∆)

For the NN → N∆ reaction, we obtain from equation (56)

t0(tπ) =
1
2s

[
s(m2

∆ + 3m2
N − s)±

√
s(s− 4m2

N )
√

(m2
∆ +m2

N − s)2 − 4m2
Nm

2
∆

]
. (121)

Substituting gives

σd =
g2
πNNg

2
πN∆

√
(s−m2

∆ −m2
N )2 − 4m2

∆m
2
N

16π
√
s(s− 4m2

N )
[
s2m2 + sm2(m2 −m2

∆ − 3m2
N ) + (m3

N −m2
∆mN )2

] , (122)

and

σi =
g2
πNNg

2
πN∆

4πs(s− 4m2
N )(s+ 2m2 −m2

∆ − 3m2
N )

× log

s(s+ 2m2 −m2
∆ − 3m2

N ) +
√
s(s− 4m2

N )
√

(s−m2
∆ −m2

N )2 − 4m2
∆m

2
N

s(s+ 2m2 −m2
∆ − 3m2

N )−
√
s(s− 4m2

N )
√

(s−m2
∆ −m2

N )2 − 4m2
∆m

2
N

 .

(123)

19



Note that if one replaces the ∆ mass with the nucleon mass, these results reduce to the elastic
formulas obtained previously (except for the statistical factor S). Also note the following limits.

σd(s→ sthreshold) = σd(s→∞) = 0 , (124)
σi(s→ sthreshold) = σi(s→∞) = 0 . (125)

2.5.1 Asymptotic region

We now consider a theoretical check of our cross section result. The Froissart theorem [15] (p.
344) states that in the high energy limit s→∞, the total cross section of an arbitrary collision
process is bounded by

σtot < Constant× [log s]2 . (126)

For the elastic pp → pp and inelastic processes pp → p∆+, allowing s to become large leads to
equations (113), (120), (124) and (125), which shows that the total cross sections predicted by
the scalar OPE model go to zero in the high energy limit, in agreement with the theorem.

3 Calculations for 2 - body final states

The previous section developed the basic theory for calculating 2 - body final state cross sections.
In the present section, these cross section formulas are illustrated with numerical results and
plots for the scattering processes pp→ pp and pp→ p∆, and the decay ∆→ pπ0.

3.1 Coupling constants

In this subsection, some comments will be made about coupling constants. In quantum field
theories, the coupling “constants” are in fact not constants, but depend on the momentum p of
the interaction, thus gπNN = gπNN (p) [7] (p. 62), [16] (pp. 146 - 151). From the perspective
of the quark model, gπNN hides the underlying quark-gluon interactions, whose strengths are
a function of the momentum of the quark-gluon interactions. The low energy pion-nucleon
coupling constant gπNN has been experimentally determined to be [17]

g2
πNN/4π ≈ 14 , (127)

for the coupling of neutral pions to protons and neutrons. The coupling of charged pions is a
factor

√
2 stronger [18] (p. 184); [19] (p. 219). In quantum field theories where spin is taken

into account, the coupling constants are dimensionless. However, in the scalar OPE theory the
coupling constants must have dimensions of GeV [7] (p. 202).

3.2 Calculations for scattering involving a massive exchange particle

The exchange particle is always either massive or massless, and quite different behaviors in cross
sections arise as a result. In this subsection, we give results for massive particle exchange.
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3.2.1 Minimum and maximum values of t

Consider the reactions pp → pp and pp → p∆+. We ignore the particle spins and assume that
the exchange particle is a neutral pion in both cases. This is consistent with the use of a scalar
theory, in that other pion isospin states are not included. Also, the use of a single pion exchange,
as opposed to multiple exchanges, is an approximation expected to be valid at low energy. At
higher energy, multiple exchanges can be introduced, or parameters, such as coupling constants,
can be adjusted to fit data. Using the following particle masses mp = 938.27 MeV,mx = mπ0 =
134.98 MeV,m∆+ = 1232 MeV, we wish to calculate the value of dσ

dt , in units of mb/GeV2 for
both reactions at s = 2sthreshold (twice the threshold to produce the ∆) for the maximum and
minimum values of t given by (56)

t0(tπ) =
1
4s

[
(m2

1 −m2
2 −m2

3 +m2
4)2 − (

√
λ12 − (+)

√
λ34)2

]
. (128)

The notation tπ is bound to be a little confusing given the the particle we are talking about is
the pion with symbol π. The symbol tπ refers to the value of the t variable at the angle of π radi-
ans. We obtain the following results. For the reaction pp→ pp, we calculate the following results.

sthreshold = 3.52 GeV2 , (129)
t0(2sthreshold) = 0 GeV2 , (130)
tπ(2sthreshold) = −3.52 GeV2 , (131)

dσ

dt
(s = 2sthreshold, t = t0) = 14700

mb
GeV2 , (132)

dσ

dt
(s = 2sthreshold, t = tπ) = 14700

mb
GeV2 . (133)

For the reaction pp→ p∆+, we calculate the following results.

sthreshold = 4.71 GeV2 , (134)
t0(2sthreshold) = −0.00723 GeV2 , (135)
tπ(2sthreshold) = −5.25 GeV2 , (136)

dσ

dt
(s = 2sthreshold, t = t0) = 6720

mb
GeV2 , (137)

dσ

dt
(s = 2sthreshold, t = tπ) = 6720

mb
GeV2 . (138)

The cross sections are the same at the values of t0 and tπ because the center of momentum
frame does not distinguish forward and backward scattering.

3.2.2 Singularities

The invariant amplitude M in equation (9) has singularities at t = m2
x and u = m2

x. These
singularities are not encountered for the reactions considered above. To show this, we evaluate
t at the singularities and compare to the values of t0 and tπ for the case of s = 2sthreshold.
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Results for the reaction pp→ pp are

sthreshold = 3.5214 GeV2 (139)
t0(2sthreshold) = 0 GeV2 (140)
tπ(2sthreshold) = −3.5214 GeV2 . (141)

The t singularity occurs at

t = m2
x = 0.0182196 GeV2 . (142)

The u singularity occurs at

u = m2
1 +m2

2 +m2
3 +m2

4 −m2
x − s− t = −3.53962 GeV2 . (143)

For these maximum and minimum values of t (t0 and tπ), the singularities are never encountered.
Results for the reaction pp→ p∆+ are

sthreshold = 4.71007 GeV2 , (144)
t0(2sthreshold) = −0.00722818 GeV2 , (145)
tπ(2sthreshold) = −5.25404 GeV2 . (146)

The t singularity occurs at

t = m2
x = 0.0182196 GeV2 . (147)

The u singularity occurs at

u = m2
1 +m2

2 +m2
3 +m2

4 −m2
x − s− t = −5.27949 GeV2 . (148)

For these maximum and minimum values of t (i.e. t0 and tπ), the singularities are never en-
countered.

3.3 Invariant distribution dσ/dt

The Lorentz invariant differential cross section dσ/dt is very useful because it represents the
complicated, non-invariant angular distribution in a very simple way. This subsection develops
explicit formulas for this invariant cross section. Equation (11) is used to calculate the invariant
distribution dσ/dt. The total cross section σ is determined by integrating dσ/dt over the range
t = [t0, tπ], with t0 and tπ given by (56). The exchange particle is the π0. By setting the
mass m4 = m∆, the mass of the ∆ particle, we generate results for the reaction pp → p∆+.
For the reaction pp → pp, results are obtained by setting m4 = mp, the mass of the proton.
Figure 4 plots dσ/dt at s = 2sthreshold. The shape of the plot agrees with Reference [20] (figure
4.8). The t and u singularities are prominent at the left and right extremes of the plot. The
direct and exchange terms are plotted separately in figures 5 and 6. The total cross section at
2sthreshold is σ(2st) = 40.2605 mb. The total cross section σ is plotted in figure 7 as a function
of s, and has a maximum of ∼ 90 mb. Since the range of integration lies between the t and
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u singularities, the Mathematica function NIntegrate is able to integrate the curve as a single
piece, unlike the case involving dσ/dΩ3lab (see section 3.6), where the singularity at θpeak requires
piecewise integration. σ goes to zero at sthreshold. As s increases, σ rises to a peak and then
slowly diminishes with increasing s. These characteristics of the shape of the curve predicted
by the scalar ABC theory agree with experiment as seen in reference [21] (figure 40.11).
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Figure 4: Differential cross section dσ/dt.
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Figure 5: Differential cross section dσ/dt direct term.
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Figure 6: Differential cross section dσ/dt exchange term.
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Figure 7: pp→ p∆+ total cross section.

3.4 Angular distribution dσ/dΩc and σ in cm frame

The angular distribution in the cm frame will be developed in this subsection. For the 2 - body
reaction 1 + 2→ 3 + 4, the angular distribution in the cm frame is given by equation (44),

dσ

dΩcm
=

S
64π2s

√
λ34

λ12
|M|2

=
1

4πs

√
λ12λ34

dσ

dt
, (149)
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with

t = m2
2 +m2

4 +
1
2s

[
−
√

(λ12 + 4sm2
2)(λ34 + 4sm2

4) +
√
λ12λ34 cos θ24c

]
. (150)

See equation (45). In the cm frame, the angular distributions of particles 3 and 4 are equal [10],

dσ/dΩ3c ≡ dσ/dΩ4c . (151)

Since both forms of the angular distribution above are functions of t, either may be used in
conjunction with the expression t(θ24c) to give dσ/dΩ4c as a function of θ24c. The exchange
particle is the π0. By setting the mass m4 = m∆, the mass of the ∆ particle, we generate results
for the reaction pp→ p∆+. For the reaction pp→ pp, results are obtained by setting m4 = mp,
the mass of the proton. In figure 8, the plot of dσ/dΩ4c at s = 2sthreshold exhibits a similar shape
and the same symmetry as the plot of dσ/dt, noteworthy since one is a function of θ while the
other is a function of t. Evaluating dσ/dΩ4c at θ = 0 and θ = π gives

dσ

dΩ4c
(s = 2st, θ = 0) = 318.376

mb
sr

, (152)

dσ

dΩ4c
(s = 2st, θ = π) = 318.376

mb
sr

. (153)

The total cross section σ is found by numerically integrating dσ/dΩ4c over all possible final
state angles θ = [0, π]. At s = 2st, σ(s = 2st) = 40.2605 mb, which matches the previous
result found by integrating dσ/dt. Figure 9 shows the total cross section σ(s) over the range
s = [sthreshold, 2sthreshold]. The plot is identical to the plot resulting from the integration of
dσ/dt, as expected since total cross section is invariant.
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Figure 8: Differential cross section dσ/dΩ4c.
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Figure 9: Total cross section σ.

3.5 Spectral distribution dσ/dE3l in the lab frame

In this subsection, the spectral distribution dσ/dE3l is derived from the invariant distribution
dσ/dt by expressing the invariants t and u in terms of the energy E and kinetic energy T ,
respectively (see Section 2.3.3). The formula is [10]

dσ

dT3l
=

dσ

dE3l
= +2m2

dσ

dt
, (154)

with t given by equation (37). The exchange particle is the π0. By setting the mass m4 = m∆,
the mass of the ∆ particle, we generate results for the reaction pp → p∆+. The results for the
reaction pp→ pp may be obtained by setting m4 = mp, the mass of the proton. The differential
cross section dσ/dE4l is plotted at s = 2sthreshold. See figure 10. Note that in reference [10], it
was shown that dE3l = −dE4l and dT3l = −dT4l. Therefore, plotting dσ/dE4l is equivalent to
plotting dσ/dE3l. The plot range is found by inverting the formulas for t and u as functions
of energy and evaluating them at t0 and tπ. The plots have the characteristic horseshoe shape
of the invariant distribution (which is plotted as a function of t). The total cross section is
determined by numerically integrating the spectral distribution, and is plotted as a function of
s over the range sthreshold to 2sthreshold. At s = 2sthreshold, the total cross section

σ(2st) = 40.2605 mb (155)

is identical to the value determined using the invariant distribution. Note that the two-body
lab frame spectral distribution in equation (154) does not possess any singularity. Also, recall
that a two-body cm frame spectral distribution is impossible to form because the cm energy of
the final state particles are fixed [10]. In figures 4 and 5 of reference [22], Murphy, Dermer and
Ramaty present cm and lab frame spectral distributions for the reaction p+α→ π0 +X. These
are very useful data for future comparisons to theoretical models. Both spectral distributions
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are finite and well behaved over the entire range of pion energy. However, the results above do
not apply to this data because the reaction p+ α→ π0 +X is at least a 3-body final state.
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Figure 10: Differential cross section dσ/dE4l.

3.6 Angular distribution dσ/dΩ3l in lab frame

The angular distribution is required in the lab frame for space radiation studies. This is devel-
oped in the present subsection. The angular distribution dσ/dΩ3l may be expressed in terms
of the cm distribution dσ/dΩ3c. This is achieved by expressing t in terms of E3l, and E3l in
terms of θ3l. The exchange particle is the π0. By setting the mass m4 = m∆, the mass of the ∆
particle, we generate results for the reaction pp → p∆+. The results for the reaction pp → pp
may be obtained by setting m4 = mp, the mass of the proton. For the reaction pp→ p∆+ with
particle 3 the ∆+ particle, the energy E3l(θ3l) is a double valued function, except at θpeak where
the two energy roots are equal. In figure 11, the two E3l roots are plotted piecewise together and
join smoothly at θ3lpeak forming a single curve. E3lroot1(θ) forms the upper part of the curve,
while E3lroot2(θ) forms the lower part of the curve. Since E3lroot1(θpeak) = E3lroot2(θpeak), θpeak

is found by setting the square root term in the numerator of (51) equal to zero and solving for
θ. The slope of E3l goes to infinity at θpeak. This causes a singularity in dσ/dΩ3l at θpeak. The
presence of the singularity is demonstrated by expressing dσ/dΩ3l in terms of dE/dθ,

dσ

dΩ3l
=

dσ

d(cosθ)dφ
=
dσ

dE

1
(− sin θ) dφ

dE

dθ
. (156)

dσ/dE3l is continuous over the allowed range of E3l (and corresponding range of θ), and
1/sinθpeak is finite at θpeak, whereas dE/dθ → ∞ at θpeak. Physically, a narrow detector
situated at an angle θ < θpeak will detect particles at two energies. The double valued nature
of E3l(θ) necessitates that dσ/dΩ3l be evaluated in two parts, one part as a function of E3lroot1,
the other of E3lroot2. dσ/dΩ3l is the sum of the two parts. This process represents the adding
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together of the contributions to the differential cross section of distinct states, which are physi-
cally distinguished by their different energies. The cross sections are added together only after
their respective amplitudes are squared. In figure 12, the plot of dσ/dΩ3l shows the singularity
at θ3lpeak ' .744. The partial cross section ∆σ is defined to be the cross section integrated over
a finite small angular range. In figure 13, the detector plot shows the partial cross section ∆σ
seen by a narrow detector of angular width ∆θ = .01745, positioned at angles θ3l ranging from 0
to θ3lpeak. The plot reveals an increase in the partial cross section near θ3lpeak. The relativistic
kinematics predict a bump in the lab angular distribution in the vicinity of θ3lpeak. The plots
of t and u as functions of θ3l support the discussion about direct and exchange terms in section
2.3.1. For a given angle θ3l and energy E3l, there corresponds two unique values of t, and of u.
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Figure 11: Energy E3l(θ3l). Upper and lower parts of the curve correspond to E3l roots 1 and
2, respectively.

3.6.1 Relation between cm and lab angles

In the cm frame, particles 3 and 4 exit from the collision in opposite directions, at angles ranging
from 0 to 2π. Angles are measured with respect to the collision axis (particle 1 moves parallel to
the collision axis in both frames, particle 2 is at rest in the lab frame but moves parallel to the
collision axis in the cm frame). Due to symmetry about the collision axis, only angles between
0 and π need be considered. When viewed from the lab frame, the exit angles of particle 3
and 4 differ from the cm angles as shown in figure 14, where cm angles are transformed into
corresponding lab angles. The difference in angles between the cm and lab frames is due to the
relative velocity of the two frames, which affects the component of particle momentum along the
collision axis, but not the component transverse to the axis. Also, see figures 15 and 16 which
show the Mandelstam variables as a function of lab angle.

For the reaction p + p → p + ∆+, with particles labeled 1 + 2 → 3 + 4, the velocities of
initial state particles 1 and 2 in the cm frame are equal and opposite, and the velocity of particle
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Figure 12: Differential cross section dσ/dΩ3l.
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Figure 13: Detector partial cross section.

2 is equal to the velocity in the lab frame. In the cm frame, the momenta of the final state
particles 3 and 4 are equal and opposite, but the velocities differ, thus the speed of the lab frame
may be less than or greater than the speed of a final state particle. For the case of particles 3
and 4 exiting along the collision axis (with angles of 0 and π), this means that in transforming
angles from cm to lab frame, the direction of a particle may be reversed (the particle with angle
θcm = 0 in the cm frame may have angle θlab = π in the lab frame). For all other angles, the
transform from the cm frame to the lab frame reduces the angles, that is θlab < θcm. The effect
of transforming the angles on the angular distributions is seen by comparing figure 8 with 12.

29



0 0.5 1 1.5 2 2.5 3
Θc

0

0.2

0.4

0.6

0.8

1

Θjl

ÈΘ3lÈ and ÈΘ4lÈ versus Θc

Figure 14: Angles θ3lab and θ4lab versus θcm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Θ3 HradL

-5

-4

-3

-2

-1

0

t

GeV2

t as function of Θ3

Figure 15: Mandelstam variable t as a function of θ3l.

3.7 Calculations for zero-mass exchange particle (Rutherford scattering)

Previous sections were concerned with massive particle exchnage. In this subsection, it is shown
how to handle massless particle exchange. In Rutherford scattering, for the case of initial and
final state particles having the same mass, the exchange particle has a mass m = 0, and the
coupling is electromagnetic with coupling constant gγNN = α (in place of the pion coupling
constant gπNN ). The exchange particle is the photon γ with mass m = 0. For pp → p∆
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Figure 16: Mandelstam variable u as a function of θ3l.

(non-Rutherford), evaluating dσ/dt at t0 and tπ at s = 2sthreshold gives

dσ

dt
(s = 2sthreshold, t = t0) = 7.59

pb
GeV2 , (157)

dσ

dt
(s = 2sthreshold, t = tπ) = 7.59

pb
GeV2 . (158)

For pp → pp (Rutherford), these cross sections are infinite due to the t and u singularities
at t = t0 and t = tπ. The physical explanation of this is that scattering always takes place
when there is a potential of infinite range. Figures 17 and 18 plot the differential cross sections
dσ/dt and dσ/dΩcm for pp → p∆+. Figures 19 and 20 plot the differential cross sections for
pp → pp. Figure 21 plots the total cross section for pp → p∆+ (non-Rutherford). For pp → pp
(Rutherford), the total cross section is infinite, in agreement with the classical result.

3.8 Comparison of cross sections

In this subsection, different forms of the cross section will be compared. The relative strengths
of interaction processes pp → pp and pp → p∆+, both for massive and zero-mass exchange
particles, are shown by comparing plots of the cross sections. For Rutherford scattering, the
total cross section is infinite and cannot be plotted. Figure 22 compares plots of total cross
sections for the elastic pp → pp and inelastic pp → p∆+ processes involving a massive (pion)
exchange particle, over the energy range sthreshold to 2sthreshold. The elastic process dominates
at low energies. Figures 23 and 24 plot the invariant cross sections of the elastic process pp→ pp
for massive (pion) and zero-mass (photon) exchange particle. Judging by the vertical axis scales,
the strength of the pion process is many orders of magnitude greater than the photon process
over the valid range of variable t. The plots are limited in height, and do not reveal the full story.
The Rutherford invariant cross section goes to infinity at the limits t0 and tπ, whereas the pion

31



-5 -4 -3 -2 -1 0
t HGeV 2L

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

dΣ

�������

dt

H
pb

������������

Gev2
L

p+p->p+∆+

Hs = 2 sthresholdL

Figure 17: Invariant differential cross section (non-Rutherford).
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Figure 18: dσ/dΩcm Differential cross section (non-Rutherford).

invariant cross section is finite at the limits, dσ/dt = 37.7 mb/GeV2. Similar statements apply
to the cm frame angular distributions, which are closely related to the t distributions since t
varies linearly with cos θ. See equation (45). For most of the allowed range of angles 0 to π, the
angular distribution of the pion process is many orders of magnitude greater than the photon
process. However, at angles 0 and π, the Rutherford angular distribution goes to infinity. This
is apparent by equation (81).
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Figure 19: Invariant differential cross section (Rutherford).
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Figure 20: dσ/dΩcm Differential cross section (Rutherford)

4 Scattering for 3 - body final states

In this section, the formalism for describing 3 - body final state reactions will be presented.
Cross sections will be calculated and special attention will be paid to the intermediate resonance
formation and decay. Approximate techniques for handling resonance decay will be introduced.
These results are important because many space radiation reactions include three or more bodies
in the final state. The reaction

NN → NNπ , (159)
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Figure 21: Total cross section (non-Rutherford).
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Figure 22: Comparison of elastic and inelastic total cross sections. The steadily falling cross
section is elastic, and the cross section which rises and then falls is inelastic.

proceeds through ∆ resonance formation

NN → N∆→ NNπ . (160)

The Feynman diagram for this reaction is shown in figure 25. Thus, the reaction proceeds in
two steps, namely

NN → N∆ , (161)
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Figure 24: Invariant distribution for pp→ pp by photon exchange.

and

∆→ Nπ . (162)

4.1 Amplitude for ∆ resonance formation and decay

An essential piece to the calculation of 3 - body final state cross sections, is the amplitude for
resonance formation and decay. This is considered in the present subsection. The amplitude for
the reaction in equation (159) is written in terms of the amplitudes in equations (161) and (162).
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-igπNN -igπN∆

 p3=pN

 p2=pN p1=pN

 q=qπ

 p6=pπ

 q∆= p4

-igπN∆

 p5=pN

Figure 25: The Feynman diagram for the reaction NN → N∆ → NNπ. Note the labeling of
the particle numbers. The initial state nucleons are labeled as particles 1 and 2. The final state
nucleons are labeled as particles 3 and 5. The intermediate ∆ state is labeled as particle 4, and
the final produced π is labeled as particle 6.

Consider the complete reaction NN → N∆ → NNπ. The Feynman diagram is illustrated in
figure 25. Using the Feynman rules for ABC (scalar) theory gives the amplitude

iM(2π)4δ4(p1 + p2 − p3 − p5 − p6)
= (−igπNN )(−igπN∆)2(2π)4δ4(p1 − p3 − qπ)(2π)4δ4(qπ + p2 − q∆)(2π)4δ4(q∆ − p5 − p6)

× 1
(2π)4

∫
d4qπ

1
(2π)4

∫
d4q∆

i

q2
π −m2

π

i

q2
∆ −m2

∆

= (−igπNN )(−igπN∆)2(2π)4δ4(p1 − p3 + p2 − q∆)(2π)4δ4(q∆ − p5 − p6)

× 1
(2π)4

∫
d4q∆

i

(p1 − p3)2 −m2
π

i

q2
∆ −m2

∆

= (−igπNN )(−igπN∆)2(2π)4δ4(p1 − p3 + p2 − p5 − p6)

× i

(p1 − p3)2 −m2
π

i

(p5 − p6)2 −m2
∆

, (163)

which reduces to

iM(1 + 2→ 3 + 5 + 6) = iM(NN → NNπ)

= (−igπNN )(−igπN∆)2 i

q2
π −m2

π

i

q2
∆ −m2

∆

, (with qπ ≡ p1 − p3 and q∆ ≡ p5 − p6).

(164)
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Now consider the simpler reaction NN → N∆. The Feynman diagram is illustrated in figure
26. The amplitude is

iM(2π)4δ4(p1 + p2 − p3 − p4)
= (−igπNN )(−igπN∆)(2π)4δ4(p1 − p3 − qπ)(2π)4δ4(qπ + p2 − p4)

× 1
(2π)4

∫
d4qπ

i

q2
π −m2

π

= (−igπNN )(−igπN∆)(2π)4δ4(p1 − p3 + p2 − p4)
i

(p1 − p3)2 −m2
π

, (165)

which reduces to

iM(1 + 2→ 3 + 4) = iM(NN → N∆)dLips

= (−igπNN )(−igπN∆)
i

q2
π −m2

π

, (with qπ ≡ p1 − p3). (166)

-igπNN -igπN∆

 p3=pN

 p2=pN p1=pN

 q=qπ

p4 =q∆

Figure 26: The Feynman diagram for the reaction NN → N∆.

Now consider the decay ∆ → Nπ. The Feynman diagram is illustrated in figure 27. The
amplitude is

iM(2π)4δ4(p4 − p5 − p6) = (−igπN∆)(2π)4δ4(p4 − p5 − p6) , (167)

which reduces to

iM(∆→ Nπ) = −igπN∆ . (168)

Combining the above equations (164), (166) and (168) gives

iM(NN → NNπ) = iM(∆→ Nπ)
i

q2
∆ −m2

∆

iM(NN → N∆) . (169)
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 p6=pπ

 p4 =q∆

-igπN∆

 p5=pN

Figure 27: The Feynman diagram for the decay ∆→ Nπ.

Thus,

|M12→356|2 = |M4→56|2
1

(p2
4 −m2

4)2
|M12→34|2 . (170)

The equations (169) and (170) express the amplitude of the complete process in terms of the
sub-processes.

4.2 Cross section for resonance formation and decay

The amplitude of the preceding section is now used to determine the cross section. In the
following discussion, all statistical factors are S = 1. Note that for NN → NNπ, S = 1/2.
From reference [10], the cross sections are

dσ(1 + 2→ 3 + 5 + 6) =
1

4F
|M12→356|2(2π)4dΦ3(p1 + p2; p3, p5, p6) , (171)

and

dσ(1 + 2→ 3 + 4) =
1

4F
|M12→34|2(2π)4dΦ2(p1 + p2; p3, p4) . (172)

The phase space factor dΦn is given in reference [10]. From reference [10], the decay width is

dΓ(4→ 5 + 6) =
1

2m4
|M4→56|2(2π)4dΦ2(p4; p5, p6) . (173)

From reference [10], the phase space recurrence relation is

dΦ3(P ; p1, p2, p3) = dΦ2(P ; q, p3)dΦ2(q; p1, p2)(2π)3dq2 , (174)

giving the phase space factor in equation (171) as (see proof in Section 4.4),

dΦ3(p1 + p2; p3, p5, p6) = dΦ2(p1 + p2; p4, p3)dΦ2(p4; p5, p6)(2π)3dp2
4 . (175)
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Substituting equations (170) and (175) into equation (171) gives

dσ(12→ 356) =
1

4F
|M4→56|2

1
(p2

4 −m2
4)2
|M12→34|2(2π)4

×dΦ2(p1 + p2; p4, p3)dΦ2(p4; p5, p6)(2π)3dp2
4

= dσ(12→ 34)
2m4

(2π)4
dΓ(4→ 56)

1
(p2

4 −m2
4)2

(2π)3dp2
4 , (176)

or

dσ(12→ 356) = dσ(12→ 34) dΓ(4→ 56)
m4

π

1
(p2

4 −m2
4)2

dp2
4 . (177)

Integration of dσ and dΓ gives

σ(12→ 356) =
∫
dp2

4 σ(12→ 34)
m4Γ(4→ 56)/π

(p2
4 −m2

4)2
. (178)

De Wit [23] (p. 111) and Pilkuhn [18] (p. 36) have taken into account the decay width of the
intermediate ∆ resonance by the substitution

1
p2 +m2

→ 1
p2 +m2 − imΓ

. (179)

Here, Γ is distinguished from the Γ(4→ 56) of equations (173) and (176) by

Γ(4→ 56) = partial width, (180)
Γ = total width, (181)

where the total width includes all possible decay paths. However, the propagators used in the
present work are defined with a different sign, and therefore the above substitution becomes

1
p2

4 −m2
4

→ 1
p2

4 −m2
4 − im4Γ

. (182)

The square of a complex number is (x+ iy)2 = x2 + y2 so that

1
(p2

4 −m2
4)2
→ 1

(p2
4 −m2

4)2 +m2
4Γ2

, (183)

The differential cross section in equation (177) becomes

dσ(12→ 356) = dσ(12→ 34) dΓ(4→ 56)
m4

π

1
(p2

4 −m2
4)2 − (m∆Γ)2

dp2
4 , (184)

and the total cross section in equation (178) becomes

σ(12→ 356) =
∫
dp2

4 σ(12→ 34)
m4Γ(4→ 56)/π

(p2
4 −m2

4)2 +m2
4Γ2

. (185)
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This can be re-written using [24]

ρ(µ2) ≡ m4Γ/π
(µ2 −m2

4)2 +m2
4Γ2

, (186)

where µ2 ≡ p2
4, to give

σ(12→ 356) =
∫
dµ2 σ(12→ 34) ρ(µ2)

Γ(4→ 56)
Γ

. (187)

Relabeling p2
4 ≡ x, the integral above is simply∫

dx
1

(x−m2)2 +m2Γ2
. (188)

See section 4.2.2 below for an alternate derivation of equations (184) and (185).

4.2.1 Integration bounds on p2
4

In equation (185), the upper integration bound on the value of p2
4 is imposed by

√
s, the total

center of momentum energy of the interaction. In the reaction 12→ 34, the square of the total
center of momentum energy is given by

s = (p1 + p2)2 = (p3 + p4)2

= m2
3 +m2

4 + 2E3E4 − 2p3 · p4

= m2
3 +m2

4 + 2E3E4 + 2|pf |2 , (189)

where p3 = −p4 and |pf | = |p3| = |p4|. Equation (189) shows that for a given s, m2
4 varies

with |pf |, and has a maximum value when |pf | = 0, that is when all the mass and energy of
particles 1 and 2 go into the mass of particles 3 and 4, with no kinetic energy remaining. In this
case, E3 = m3, E4 = m4, and equation(189) becomes

s = (m3 +m4)2 . (190)

Solving for m4, and noting that p2
4 ≡ m2

4

m4,max =
√
s−m3 , (191)

xmax = p2
4 = (

√
s−m3)2 . (192)

The lower integration bound on the value of p2
4 is imposed by the masses of the decay products

of particle 4. In the reaction 12→ 34→ 356, particle 4 decays by 4→ 56 into two real particles.
For particle 4 to decay into particles 5 and 6, the mass of particle 4 must be at least as great as
the sum of the masses of particles 5 and 6. Thus,

m4,min = m5 +m6 . (193)
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This result can also be demonstrated as follows. In the rest frame of particle 4, the square of
the center of momentum energy is

s = m2
4 = (p5 + p6)2

= m2
5 +m2

6 + 2E5E6 − 2p5 · p6

= m2
5 +m2

6 + 2E5E6 + 2|p5|2 , (194)

where the last step follows from p6 ≡ −p5. The minimum value of m4 occurs when |p5| =
|p6| = 0, in which case E5 = m5 and E6 = m6 and equation (194) reduces to

m2
4 = (m5 +m6)2 , (195)

which is equivalent to equation (193).

4.2.2 Alternate derivation of the cross section

An alternate, and better, derivation is now given. Equations (184) and (185) may also be derived
by starting with the Feynman diagram for the 3 - body final state (figure 26) and noting that
particle 4 is represented by an internal line (see Feynman Rules). This is a virtual particle whose
mass m4 can vary. Since particle 4 decays, it also has a decay width Γ. The internal decaying
particle is described by the Breit-Wigner propagator [8] (p. 101), [16] (p. 163),

Propagator =
i

p2
4 −m2

4 − im4Γ
. (196)

The amplitudeM for the reaction 1+2→ 4+5+6 is then determined by applying the Feynman
rules to figure 26, yielding

|M|2 = (gπNN g2
πN∆)2 1

(p2
4 −m2

∆)2 + (m∆Γ)2

(
1

t−m2
π

+
1

u−m2
π

)2

. (197)

Substituting the amplitude from equation (197) leads to equation (184), which may be expanded
to

dσ12→456 =
(
S34

16πλ12
|M12→34|2dt

)(
S56|p5|

8m2
4(2π)2

|M4→56|2dΩ5

)
×m4

π

dp2
4

(p2
4 −m2

∆)2 − (m∆Γ)2
, (198)

where

m∆ = ∆ resonance mass,
Γ = ∆ resonance width,

m2
4 = p2

4 6= m2
∆ in general,

|p5| =
1

2m4

√
m4

4 +m4
5 +m4

6 − 2(m2
5m

2
6 +m2

5m
2
4 +m2

6m
2
4) .
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The result for |p5| is taken from reference [10]. S34 and S56 are the statistical factors associated
with the sets of final state particles (3,4) and (5,6), respectively. For the reaction NN → N∆→
NNπ, both factors are unity. The integrals over dt and dΩ5 are performed holding m2

4 constant.
Since Γ is invariant (like rest mass, Γ is a rest width), the integral over dΩ5 is most easily
performed in the cm frame for particle 4 and yields a factor of 4π. While the integral over
dt is independent of p2

4, the integration bounds t0 and tπ are functions of m2
4(= p2

4), so that
integration over dt must precede integration over p2

4.

4.2.3 Narrow width approximation

Consider the approximation of a narrow width. A narrow width (Γ→ 0) corresponds to a long
lifetime (τ →∞). The narrow width approximation allows equation (186) to be simplified. The
narrow width approximation gives [18] (p. 37)

δ(x−m2) = lim
mΓ→0

ρ(x)

= lim
mΓ→0

mΓ/π
(x−m2)2 +m2Γ2

, (199)

so that equation (186) becomes

σ(12→ 356) =
∫
dµ2 σ(12→ 34) δ(µ2 −m2

4)
Γ(4→ 56)

Γ
, (200)

to finally give the cross section in the narrow width approximation [18] (p. 37),

σ(12→ 356) = σ(12→ 34)
Γ(4→ 56)

Γ
. (201)

A further simplification is achieved if the partial width is nearly equal to the total width, i.e.

Γ ≈ Γ(4→ 56) . (202)

Then

σ(12→ 356) ≈ σ(12→ 34) , (203)

or

σ(NN → NNπ) ≈ σ(NN → N∆) . (204)

This expression states that if the ∆ resonance decays primarily to a particular final state Nπ,
then the total cross section for π production is nearly the same as the total cross section for ∆
production. Since the calculation of the cross section of a 2 - body final state N∆ is simpler than
that of a 3 - body final state NNπ, equation (204) is a considerable simplification in calculating
the total cross section for π production.
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4.3 dLips formalism

In this subsection it will be shown how to develop useful formulas to handle Lorentz invariant
phase space. Note that the above is discussed by [18] (pp. 16, 18) who uses a formalism involving
the Lorentz invariant phase space dLips(p1, ...pn). The result of Pilkuhn is easily shown to be
identical to the result obtained here. We have the definition [18] (p. 16)

dLips(p1 . . . pn) ≡
n∏
i=1

d3pi
(2π)32Ei

, (205)

and

dLips(s; p1 . . . pn) = (2π)4δ4(P −
n∑
i

pi)dLips(p1 . . . pn)

= (2π)4δ4(P −
n∑
i

pi)
n∏
i=1

d3pi
(2π)32Ei

= (2π)4dΦn(P ; p1 . . . pn) . (206)

The Pilkuhn recurrence formula is (with sd ≡ q2 = (p1 + p2)2)

dLips(s; p1, p2, p3) =
1

2π
dLips(s; pd, p3)dLips(sd; p1, p2)dsd

= (2π)4dΦ3(P ; p1, p2, p3) =
1

2π
(2π)4dΦ2(P ; pd, p3)(2π)4dΦ2(q; p1, p2)dq2 , (207)

or

dΦ3(P ; p1, p2, p3) = (2π)3dΦ2(P ; pd, p3)dΦ2(q; p1, p2)dq2 , (208)

in agreement with equation (175).

4.4 Proof of phase space formula

We now prove the phase space formula in equation (175),

dΦ3(p1 + p2; p3, p5, p6) = dΦ2(p1 + p2; p4, p3)dΦ2(p4; p5, p6)(2π)3dp2
4 . (209)

The proof proceeds as follows [18] (p. 18). The various phase space factors are

dΦ3(p1 + p2; p3, p5, p6) = δ4(p1 + p2 − p3 − p5 − p6)
d3p3

(2π)32E3

d3p5

(2π)32E5

d3p6

(2π)32E6
,

dΦ2(p1 + p2; p4, p3) = δ4(p1 + p2 − p4 − p3)
d3p4

(2π)32E4

d3p3

(2π)32E3
,

dΦ2(p4; p5, p6) = δ4(p4 − p5 − p6)
d3p5

(2π)32E5

d3p6

(2π)32E6
.
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d3p refers to the volume element of a 3-vector and d4p refers to the volume element of a 4-vector.
However, when we write p2 or dp2, then the p refers to a 4-vector, not a 3-vector! This is why
some authors [24] prefer to write dp2 ≡ dµ2 where µ is the mass, given by p2 = µ2 = E2 − |p|2.
Using the identity

1 = d4p4δ
4(p4 − p5 − p6) , (210)

yields

dΦ3(p1 + p2; p3, p5, p6) = δ4(p1 + p2 − p3 − p5 − p6)
d3p3

(2π)32E3

×d4p4 δ
4(p4 − p5 − p6)

d3p5

(2π)32E5

d3p6

(2π)32E6

= δ4(p1 + p2 − p3 − p5 − p6)
d3p3

(2π)32E3
d4p4 dΦ2(p4; p5, p6) .

Now using the result 1 = δ(x− a)dx or

1 = δ(p2
4 − sd)dp2

4 (211)

with [24] (equation 14), [18] (p. 15),

sd = (p5 + p6)2

= (E5 + E6)2 − (p5 + p6)2 , (212)

gives

d4p4 = d4p4δ(p2
4 − sd)dp2

4

=
d3p4

2E4
dp2

4 = (2π)3 d3p4

(2π)32E4
dp2

4 , (213)

where we have used the result

d3p

2E
= δ(p2 −m2)d4p . (214)

Thus, the above phase space factor becomes

dΦ3(p1 + p2; p3, p5, p6) = δ4(p1 + p2 − p3 − p4)
d3p3

(2π)32E3

d3p4

(2π)32E4

×dp2
4 dΦ2(p4; p5, p6)

= dΦ2(p1 + p2; p4, p3)dΦ2(p4; p5, p6)(2π)3dp2
4 , (215)

which is the desired result.
The equation (214) used in the preceding step is derived as follows. Differentiating p2 =

E2 − p2 gives

d4p = dE d3p . (216)
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Expanding δ(p2 −m2)d4p gives

δ(p2 −m2)d4p = δ(E2 − p2 −m2)dE d3p . (217)

Applying the formula

δ(f(E)) =
∑
i

1
f ′(E)

δ(E − Ei) , (218)

with f(E) = (E +
√

p2 +m2)(E −
√

p2 +m2), and keeping only the positive E root, gives

δ(p2 −m2)d4p = δ(E −
√

p2 +m2)dE
d3p
2E

. (219)

Integrating over dE cancels the delta function, leaving

d3p

2E
= δ(p2 −m2)d4p . (220)

5 Conclusions

We have presented some applications of a scalar quantum field theory method by considering
massive particle exchange, and we have calculated differential and total cross sections for elastic
and inelastic processes. The use of Mandelstam variables makes the mathematical expressions
much simpler. The cross section formulas are all obtained in closed form and are compact
and simple. The cross sections display typical behavior of elastic and inelastic processes. The
theory only includes the lowest order terms. At larger energies, higher order terms are expected
to contribute. However, these complications may sometimes be circumvented by appropriate
adjustment of parameters, such as the coupling constants. The theory developed herein will be
useful in calculating cross sections for production of all types of hadrons, if the effects of spin
can be neglected. These cross sections can then be included in space radiation transport codes.
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