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Nomenclature

3-vectors are denoted by bold face quantities such as p.

4-vectors are denoted by non-bold face quantities such as p.

cm is the abbreviation for the center of momentum frame.

The lab frame is always identical to the target frame, which is typically the spacecraft frame..

∗ refers to either the cm or projectile frames.

Subscript c refers to the cm frame.

Subscript p refers to the projectile frame.

Subscript l or lab refers to the lab frame.

If equations do not have a ∗, c, p, or l subscript, then it means the equation is true in any
frame.

E∗ or p∗ or θ∗ refer to the energy or momentum or angle of an arbitrary particle in the ∗
frame.

Ec or pc or θc refer to the energy or momentum or angle of an arbitrary particle in the cm frame.

Ep or pp or θp refer to the energy or momentum or angle of an arbitrary particle in the projectile
frame.

El or pl or θl refer to the energy or momentum or angle of an arbitrary particle in the lab
frame.

In general, x∗ refers to the value of the x quantity of an arbitrary particle in the * frame,
and similarly for the cm and projectile frames.

Ej∗ or pj∗ refers to the energy or momentum of particle j in the ∗ frame, and similarly for
the cm and projectile frames.

In general, xj∗ refers to the value of the x quantity of particle j in the ∗ frame, and simi-
larly for the cm and projectile frames.

θjk∗ refers to the angle of the momentum of particle j with respect to the momentum of
particle k. The angle is measured in the ∗ frame, and similarly for the cm and projectile frames.
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Often, just θj or θjl or θjc will be written. This is used when we are referring to the angle
of particle j but have not yet needed to decide what the angle of particle j is with respect to.

Consider 1+2→ 3+4. In the cm frame, p1c+p2c = 0 = p3c+p4c implying |p1c| = |p2c| ≡ |pic|
and |p3c| = |p4c| ≡ |pfc|. Eic, Efc or pic,pfc refer to the energies or momenta of the initial (i.e.
particles 1 or 2) or final (i.e. particles 3 or 4) particles in the cm frame.

β∗ or γ∗ refer to the speed (in units of c) or relativistic γ factor of an arbitrary particle in
the ∗ frame. They are related via γ2 = 1

1−β2 , and similarly for the cm and projectile frames.

βj∗ or γj∗ refer to the speed or relativistic γ factor of particle j in the ∗ frame, and simi-
larly for the cm and projectile frames.

β∗l or γ∗l refer to the speed or relativistic γ factor of the ∗ frame with respect to the lab frame,
and similarly for the cm and projectile frames. (Notice that no particular particle is involved
here. It’s just one frame with respect to another.)

The quantity α∗ ≡ β∗l
β∗

is defined as the speed of the ∗ frame with respect to the lab divided
by the speed of a particular particle in the ∗ frame, and similarly for the cm and projectile frames.

The quantity αj∗ ≡ β∗l
βj∗

is defined as the speed of the ∗ frame with respect to the lab di-
vided by the speed of particle j in the ∗ frame, and similarly for the cm and projectile frames.

In general, x0 refers to zeroth component of the 4-vector x where the components are written
xµ = (x0,x) = (x0,x). (The 0 is not a particle label. Particle labels are subscripts 1, 2, 3, 4, etc.)

Mandelstam variable s ≡ (p1 + p2)2.

iv



Contents

1 Introduction 1
1.1 S-matrix and invariant amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Units and the invariant amplitude . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 dΓ and dσ in terms of the phase space factor . . . . . . . . . . . . . . . . 3

1.3 Differential cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 2 - body final state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 3 - body final state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Unit conversion to mb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Proof that the differential cross section Ed3σ/d3p is Lorentz invariant . . . . . . 7
1.5 Denominator flux factor in any frame . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Denominator flux factor in the lab frame . . . . . . . . . . . . . . . . . . . . . . . 9

2 Decay into two particles 10
2.1 Decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Ho-Kim phase space method . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Griffiths phase space method . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Decay energies and momenta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Two - body reaction producing one body . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Calculation using de Wit and Smith formula . . . . . . . . . . . . . . . . 16

3 Non - relativistic two - body kinematics 17
3.1 Reactions between elementary particles . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Mandelstam variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Lab frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Proof of the relation t = (p1 − p3)2 = |p4l|2 . . . . . . . . . . . . . . . . . 20

3.2 Relations between momentum and angle of scattered particle . . . . . . . . . . . 22
3.2.1 Center of momentum frame . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Lab frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Qualitative understanding of the |p3l| solutions . . . . . . . . . . . . . . . 29

3.3 Relations between initial and final momenta in lab and cm frames . . . . . . . . 30
3.3.1 Lab frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Center of momentum frame . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Relativistic two body kinematics 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 3 - body final state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 2 - body final state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Elastic and inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Mandelstam variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Use of the s variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Use of the t variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



4.2.3 Equal mass particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Relations between Ej and θj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Center of momentum frame . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Lab frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.3 Proof of equation (285) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Momenta in the cm frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Energies in the cm frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 Bounds on Mandelstam variable t . . . . . . . . . . . . . . . . . . . . . . 46
4.4.4 Momentum and energy thresholds . . . . . . . . . . . . . . . . . . . . . . 47
4.4.5 Relative scattering angle in the cm frame . . . . . . . . . . . . . . . . . . 48
4.4.6 Equivalence of |pic| and |pfc| . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.7 Relationship of s and p1l . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.8 Threshold of s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Lorentz transformations 54
5.1 Lorentz transformations of energy and momentum . . . . . . . . . . . . . . . . . 55
5.2 Transformation between cm or projectile frame and lab (target) frame . . . . . . 56

5.2.1 Evaluation of βcl and γcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 Evaluation of βpl and γpl . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Energy transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Angle transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.1 Evaluation of α3c and α4c . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Transformation of angular distributions . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Double differential cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Derivation of d cos θjc/d cos θjl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Two body final state cross sections 67
6.1 Differential cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 General form of differential cross sections . . . . . . . . . . . . . . . . . . 67
6.1.2 Angular distribution in cm frame . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.3 t distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.4 Cross section units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.5 Relation between dσ

dΩc
and dσ

dt . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.6 Lab frame spectral distribution . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.7 Lab frame angular distribution . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusions 78

vi



List of Figures

1 Scalar product between two vectors A and B is given by A.B = AB cos θ, where
A and B are the vector magnitudes. Note that the angle θ is defined as the angle
between the vectors arranged tail to tail. . . . . . . . . . . . . . . . . . . . . . . . 19

2 The angle θjk is the angle between the vectors pj and pk connected tail to tail as
in figure 1. The scalar product is given by pj .pk = |pj ||pk| cos θjk. . . . . . . . . 19

3 Definition of angles in the lab frame. θ14l is the recoil angle of the target. The
angle between the final state particles is θ34 = θ13 + θ14. Note that the angle θ is
defined as the angle between the vectors arranged tail to tail. . . . . . . . . . . . 21

4 Definition of angles in the cm frame. Note that θ13c = θ24c and θ14c = θ23c. The
angle between the final state particles is θ34 = θ13 +θ14. In the cm frame, θ34 = π.
Note that the angle θ is defined as the angle between the vectors arranged tail to
tail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Elastic billiard ball collision where the mass of the projectile is greater than the
mass of the target. b is the impact parameter. The balls are imagined to have
the same density and so the more massive ball is drawn larger. (If the balls are
of different density and have the same size, the dynamics shown in this figure are
not altered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 The reaction, 1 + 2→ 3 + 4, viewed in the cm frame. . . . . . . . . . . . . . . . . 53
7 Reference frame S′ moves at speed v relative to S. . . . . . . . . . . . . . . . . . 55
8 Frame S viewed from S′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



.

viii



Abstract

In support of the development of 3-dimensional transport codes, this paper derives the
relevant relativistic particle kinematic theory. Formulas are given for invariant, spec-
tral and angular distributions in both the lab (spacecraft) and center of momentum
frames, for collisions involving 2, 3 and n - body final states.

1 Introduction

One of the main new challenges in the development of radiation transport codes, such as
HZETRN, is to provide for fully 3 - dimensional transport. This requires 3 - dimensional
cross sections as input. Typically, these differential cross sections are calculated most easily in
the center of momentum frame for nucleon - nucleon collisions, or the projectile frame for nu-
cleus - nucleus reactions. However, transport codes require these cross sections in the lab frame.
Even though there is extensive literature on transforming these cross sections from one frame
to another, there is no reference that provides a complete discussion of this problem or includes
special problems that need to be considered for radiation transport. One very common problem
encountered in the literature is that lab differential cross sections are often written in terms of
center of momentum or projectile variables. This is not useful for radiation transport because
everything must be written in terms of lab variables. A major portion of the present paper is
devoted to this problem. Significant complications arise because double - valued functions arise
and these must be handled with extreme care. For example, two different angles in the center of
momentum frame can correspond to a single angle in the lab frame. Another significant problem
is that infinities can arise in the transformation of angular distributions to the lab frame. These
infinities are rarely discussed in the literature. They are given significant attention in the present
work. The aim of this paper is to provide a thorough analysis of relativistic transformations of
differential cross sections, so that HZETRN can be upgraded for 3 - dimensional transport.

This section discusses the formulation of differential cross sections in terms of scattering
amplitudes, along with the various kinematic factors that are present. The types of differential
cross sections that may be formed for 2 and 3 - body final states are also discussed.

1.1 S-matrix and invariant amplitude

The invariant amplitude is determined from the scattering matrix (often referred to as the S-
matrix), and along with appropriate phase space factors, is used to determine the decay rate dΓ
and cross section dσ differentials. Cross sections and decay rates are fundamentally calculated
from a quantity called the scattering matrix or S-matrix, which is simply the time evolution
operator for future and past times going to positive and negative infinity, S ≡ U(+∞,−∞).
The Dyson expansion of the S-matrix is

S = 1 +
∞∑
n=1

1
n!

(−i)n
∫
d4x1d

4x2 · · · d4xn T [HI(x1)HI(x2) · · ·HI(xn)]

≡ Te−i
∫
d4x H = Te

−i
∫∞
−∞ dt H

, (1)

1



where T is the time ordering operator, H is the Hamiltonian and H is the Hamiltonian density.
Cross sections and decay rates are usually expressed in terms of an intermediate quantity called
the invariant amplitude M, which is related to the S-matrix. For the reaction 1 + 2 → 3 + 4,
the relation is given by the Particle Data Group [1] and Griffiths [2] as

〈f |S|i〉 ≡ 〈p3p4|S|p1p2〉 = 1− iM(2π)4δ4(p1 + p2 − p3 − p4)
1√

2E12E22E32E4
, (2)

where p is the 4-momentum, E is the total energy, and the initial and final states are |i〉 ≡ (p1p2〉
and |f〉 ≡ (p3p4〉. With the above definition, the Feynman rules give −iM. In the above
equation, the states are normalized according to

〈p′|p〉 = (2π)3δ3(p− p′) . (3)

Peskin defines the Transition matrix T (not to be confused with time ordering operator in the
Dyson expansion) according to

S ≡ 1 + iT , (4)

and uses a different definition [3] (p. 104),

〈p1 . . . pn|iT |pApB〉 = iM(2π)4δ4(pA + pB − Σpf ) , (5)

giving

〈f |S|i〉 ≡ 〈p1 . . . pn|S|pApB〉 = 1 + iM(2π)4δ4(pA + pB − Σpf ) . (6)

With the above Peskin definition, the Feynman rules give +iM. In the above equation, the
states are normalized according to Peskin [3] (p. 23)

〈p|q〉 = 2Ep(2π)3δ3(p− q) . (7)

For Dirac spinor states, Peskin [3] (p. 59) uses a similar normalization namely,

〈p, r|q, s〉 = 2Ep(2π)3δ3(p− p′)δrs . (8)

Finally, note that Greiner uses a definition with different normalization for scalar and spinor
states. See references [4] (p. 267), [5] (p. 221);

〈f |S|i〉 = iM(2π)4δ4(p1 + p2 −
n∑
i=1

p′i)
2∏
i=1

√
Ni

2Ei(2π)3

n∏
i=1

√
N ′i

2E′i(2π)3
, (9)

where the normalization factors are Ni = 1 for scalar bosons and Ni = 2m for fermions. See
reference [4] (p. 267).
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1.2 Phase space

The phase space of a reaction contains all allowed momentum states of the final state particles.
The phase space factor dΦn is used in expressions for dΓ and dσ. The decay rate Γ and total
cross section σ are obtained by integrating over phase space.

1.2.1 Units and the invariant amplitude

In this paper, natural units are used, with h̄ = c = 1, which means that both length and time
have units of GeV−1 and mass has units of GeV. Thus, cross sections σ have units of GeV−2.
The decay width Γ is related to the lifetime τ of a particle by

τ =
1
Γ
. (10)

In natural units, the decay width has units of GeV giving the correct units of time, GeV−1, for
the lifetime. The invariant amplitudeM used below has units [2] (p. 200) of GeV4−n where n is
the number of external particles involved in a reaction. The number of external particles is equal
to the number of external lines in the corresponding Feynman diagram. For example, when one
particle decays into two particles, the number of external lines in the Feynman diagram is 3,
and the units of M are GeV. For a 2 - body reaction producing two bodies in the final state,
there are 4 external lines and so M is dimensionless.

1.2.2 dΓ and dσ in terms of the phase space factor

The partial decay width (rate) of a particle of rest mass m decaying into n other particles is
given by [1]

dΓ =
S

2m
|M|2(2π)4dΦn(P ; p1, · · · , pn) , (11)

or, in compact form as

dΓ =
S

2m
|M|2(2π)4dΦn , (12)

where M is the invariant amplitude and S is a product [2] (p. 376) of statistical factors, 1/j!
for each group of j identical particles in the final state, i.e. S = Πa

1
ja! . These statistical factors

are discussed in references [3] (pp. 108, 151), [6] (p. 259), [7] (p. 110), [8] (p. 200), [9] (p. 285)
and [10] (p. 99). Gross [6] (p. 259) gives the most extensive discussion concerning the statistical
factor versus limiting the regions of integration. The phase space factor is [1]

dΦn(P ; p1, · · · , pn) = δ4(P −
n∑
i=1

pi)
n∏
i=1

d3pi
(2π)32Ei

, (13)
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where n is the number of final state particles, and

P =
k∑
i=1

pi , (14)

where k is the number of initial state particles. Equation (13) can be generated recursively [1],

dΦn(P ; p1, · · · , pn) = dΦj(q; p1, · · · , pj)dΦn−j+1(P ; q, pj+1, · · · , pn)(2π)3dq2 , (15)

where

q2 = (
j∑
i=1

Ei)2 − |
j∑
i=1

pi|2 . (16)

Consider the particle reaction,

1 + 2 → 3 + 4 + · · ·+ (n+ 2) , (17)

where the numbers label the particles. The microscopic differential cross section is [1]

dσ =
S

4F
|M|2(2π)4dΦn(p1 + p2; p3, · · · , pn+2)

=
S

4F
|M|2(2π)4δ4(p1 + p2 − p3 − p4 . . .− pn+2)

× d3p3

(2π)32E3

d3p4

(2π)32E4
· · · d3pn+2

(2π)32En+2
, (18)

or, in compact form [10] (p. 99),

dσ =
S

4F
|M|2(2π)4dΦn , (19)

where, again, S is a product [2] (p. 376) [10] (p. 99) of statistical factors, 1/j! for each group of
j identical particles in the final state. The denominator flux factor F is defined as [10] (p. 98),
[11]

F ≡
√

(p1.p2)2 −m2
1m

2
2 , (20)

where p1.p2 denotes a 4-vector product. F can be written,

Fany frame =
1
2

√
λ12 , (21)

where

λjk ≡ λ(s,m2
j ,m

2
k)

≡ (s−m2
j −m2

k)
2 − 4m2

jm
2
k , (22)
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with the Mandelstam variable,

s ≡ (p1 + p2)2 . (23)

Note that

λjk = λkj . (24)

Also, note that [10] (p. 98),

Fl = m2 |p1l| , (25)

and

Fc =
√
s |p1c| = (E1 + E2)|p1c| . (26)

These equations agree with equation (5.113) in reference [11] and equations (4.52) and (4.53) in
reference [10]. Note that F can be written in terms of the relative velocity vrel = |v1− v2|. This
method is used in references [3] (pp. 105, 106) and [12] (pp. 17, 18). In the above equation, the
4-dimensional delta function is

δ4(p− p0) ≡ δ(E − E0)δ3(p− p0) , (27)

or, for example,

δ4(p1 + p2 − p3 − p4) = δ(E1 + E2 − E3 − E4)δ3(p1 + p2 − p3 − p4) , (28)

where δ3(p− p0) cancels a 3 - dimensional integral, with f(p) being an arbitrary function, as∫
d3pf(p) δ3(p− p0) ≡ f(p0) , (29)

or ∫
d3p δ3(p− p0) ≡ 1 . (30)

1.3 Differential cross sections

From equation (18), it can be seen that, in general, one will be able to form Lorentz invariant
differential cross sections, such as d3σ/(d3p/E), by bringing the relevant phase space factor to
the left hand side. From such Lorentz invariant cross sections, one can form doubly differential
cross sections such as,

d2σ

dEdΩ
= |p| d3σ

d3p/E
, (31)
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which follows from

d3p

dE
=

p2

E
d|p|dΩ , (32)

and

p2 = E2 −m2 , (33)

and

2|p| d|p| = 2E dE . (34)

1.3.1 2 - body final state

For a 2 - body final state, such doubly differential cross sections are meaningless, since E and
θ are functions of each other. Therefore, either dσ/dE or dσ/dΩ may be formed, but not
d2σ/dE dΩ and therefore, not Ed3σ/d3p. Consider the reaction,

1 + 2→ 3 + 4 , (35)

where the numbers represent particles. From equation (18), the cross section is of the form,

dσ ∝ |M|2δ(E1 + E2 − E3 − E4)δ3(p1 + p2 − p3 − p4)
d3p3

(2π)32E3

d3p4

(2π)32E4
. (36)

The delta function, δ3(p1 + p2 − p3 − p4), cancels the integral over d3p3, resulting in,

dσ ∝ |M|2δ(E1 + E2 − E3 − E4)
1

(2π)32E3

d3p4

(2π)32E4
. (37)

However, since d3p4 = p2
4dp4dΩ4 ∝ dE4dΩ4, and the energy delta function cancels the integral

over dE4, the result is

dσ ∝ |M|2dΩ4 . (38)

Thus, for a 2 - body final state, one can form the single differential cross section dσ/dΩ4, or
alternatively dσ/dE4, because energy is a function of angle.

Finally, note that for a 2 - body final state, the angular distribution dσ/dΩ can be formed
in both the lab and cm frames. However, the spectral distributions dσ/dE and dσ/dT , where
T is kinetic energy, can only be formed in the lab frame and not in the cm frame. The reason is
that both T and E = m+T are fixed in the cm frame, but vary with angle in the lab frame. An
exception to the above statement is if the produced particle has a variable mass. An example is
the ∆ particle. (See reference [13].) However, a variable mass implies that the particle decays,
which means that ultimately the final state is not a 2 - body state.
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1.3.2 3 - body final state

Now, consider the 3 - body final state,

1 + 2→ 3 + 4 + 5 . (39)

From equation (18), the cross section is of the form,

dσ ∝ |M|2δ(E1 + E2 − E3 − E4 − E5)δ3(p1 + p2 − p3 − p4 − p5)

× d3p3

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5
, (40)

which becomes,

dσ ∝ |M|2δ(E1 + E2 − E3 − E4 − E5)
1

(2π)32E3

d3p4

(2π)32E4

d3p5

(2π)32E5
, (41)

because the momentum delta function cancels an integral. The energy delta function cancels
another integral giving,

dσ ∝ |M|2 1
(2π)32E3

dΩ4

(2π)32E4

d3p5

(2π)32E5
, (42)

or

dσ ∝ |M|2dΩ4
d3p5

E5
, (43)

so that the differential cross section can now be formed as,

d3σ

d3p5/E5
∝
∫
|M|2dΩ4 . (44)

1.3.3 Unit conversion to mb

As shown above, the units of dσ/dt are GeV−4. These units are converted to mb/GeV2 by the
conversion factor GeV−2 = 0.389379 mb.

1.4 Proof that the differential cross section Ed3σ/d3p is Lorentz invariant

A proof of the Lorentz invariance of Ed3σ/d3p can also be found in reference [14] (p. 52).
Differentiating p2 = E2 − p2 gives,

d4p = dE d3p . (45)

Expanding δ(p2 −m2)d4p gives,

δ(p2 −m2)d4p = δ(E2 − p2 −m2)dE d3p . (46)
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Applying the formula

δ(f(E)) =
∑
i

1
f ′(E)

δ(E − Ei) , (47)

with f(E) = (E +
√

p2 +m2)(E −
√

p2 +m2), and keeping only the positive E root, gives

δ(p2 −m2)d4p = δ(E −
√

p2 +m2)dE
d3p
2E

. (48)

Integrating over dE cancels the delta function, leaving

d3p

2E
= δ(p2 −m2)d4p . (49)

Since p2 and m2 are Lorentz invariant, the right hand side is invariant, and therefore d3p/2E
is invariant. The total cross section, σ, is invariant since dσ is transverse to the direction of
motion z, and transforms like an area. Consequently, Ed3σ/d3p is invariant.

As an alternate proof, expand the momentum integration measure,

d3p = dpzdpxdpy . (50)

Here, dpx and dpy are Lorentz invariant, being transverse to the direction of motion z. Since σ
is Lorentz invariant, it remains to show that E

dpz
is invariant. Rapidity y, is defined through

E = mT cosh y and pz = mT sinh y , (51)

and

mT ≡ m2 + px2 + p2
y

= E2 − pz2 , (52)

which gives

dpz
dy

= mT cosh y = E . (53)

Thus,

E

dpz
=

1
dy

. (54)

Under Lorentz transformations, rapidities add, so that y = y′ + yRF , where yRF is the rapidity
of a certain reference frame, y′ is the rapidity in that reference frame, and y is the transformed
rapidity. Thus, dy = dy′, showing that dy = dpz/E is invariant under Lorentz transformations.
Thus, Ed3σ/d3p is Lorentz invariant.

8



1.5 Denominator flux factor in any frame

The denominator flux factor F is defined in reference [10] (p. 98) as

F ≡
√

(p1.p2)2 −m2
1m

2
2 . (55)

This can be written

Fany frame =
1
2

√
λ12 , (56)

where [14] (p. 23), [15]

λ(x, y, z) ≡ (x− y − z)2 − 4yz
= x2 − 2(y + z)x+ (y − z)2

= x2 + y2 + z2 − 2yx− 2zx− 2yz , (57)

and

λij ≡ λ(s,m2
i ,m

2
j ) = (s−m2

i −m2
j )

2 − 4m2
im

2
j . (58)

Now calculate s as,

s ≡ (p1 + p2)2 = p2
1 + p2

2 + 2p1 · p2

= m2
1 +m2

2 + 2(E1E2 − p1 · p2) in any frame . (59)

Then,

λ12 = λ(s,m2
1,m

2
2) = (s−m2

1 −m2
2)2 − 4m2

1m
2
2

= 4[(E1E2 − p1 · p2)2 −m2
1m

2
2]

= 4[(p1 · p2)2 −m2
1m

2
2] . (60)

1.6 Denominator flux factor in the lab frame

For the reaction 1 + 2 → 3 + 4 + · · ·, let the rest frame of particle 2 be the lab (target) frame.
Then, p2 ≡ 0, and

(p1 · p2)2 −m2
1m

2
2 = (E1E2 − p1 · p2)2 −m2

1m
2
2

= E2
1E

2
2 −m2

1m
2
2 (because p2 ≡ 0)

= (p2
1lab +m2

1)m2
2 −m2

1m
2
2

= m2
2p

2
1lab , (61)

giving

Flab = m2|p1llab| . (62)
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2 Decay into two particles

This section is concerned with the decay of one particle into two particles. The fundamental
quantity is the decay width. Formulas are given that enable this to be calculated from the
invariant amplitude. The kinematics of the final state particles is also discussed. Finally, the
decay width is related to the cross section for the reverse process in which two particles react to
form a single particle.

2.1 Decay width

Consider the reaction,

N1 +N2 → N1 + ∆→ N1 + π +N3 , (63)

where Ni are nucleons (either neutron or proton), ∆ is the ∆ particle and π denotes a pion.
Pilkuhn [16] (pp. 37, 38) and de Wit [7] (p. 113) show that the cross section for this two step
process can be approximately written as,

σ(N1 +N2 → N1 + π +N3) ≈ σ(N1 +N2 → N1 + ∆)
Γ(∆→ π +N3)

Γ
. (64)

In the above, Γ is the total decay width for the process ∆→ anything. We seek expressions for
2 - body cross sections, as well as the decay of a single body into 2 bodies. Consider the decay,

3→ 1 + 2 , (65)

where the numbers denote particles. The 2-particle decay width is given by

dΓ =
S

2m
|M|2(2π)4dΦ2(P ; p1, p2) , (66)

with m ≡ m3. The phase space factor is

dΦ2(P ; p1, p2) = δ4(p3 − p1 − p2)
d3p1

(2π)32E1

d3p2

(2π)32E2

= δ(E3 − E1 − E′2)
d3p1

e1e′2

= δ(E3 − E1 − E′2)
|p1|2d|p1|dΩ1

e1e′2
, (67)

with

e ≡ (2π)32E , (68)

where it is understood that

p2 ≡ p3 − p1 , (69)
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so that in the above equation, with |p1|2 ≡ p2
1,

E1 =
√

p2
1 +m2

1 (70)

E′2 ≡
√

(p3 − p1)2 +m2
2 . (71)

Two equivalent methods to eliminate the δ function are now given. These are the Ho-Kim phase
space method [10] and the Griffiths phase space method [2].

2.1.1 Ho-Kim phase space method

Ho-Kim [10] eliminates the δ function by making a change of variables as follows. Simplify
equation (67) by writing

d|p1| =
d|p1|

d(E1 + E′2)
d(E1 + E′2) , (72)

so that the integral over d(E1 +E′2) will cancel the deltal function δ(E3−E1−E′2). Ultimately,
the quantity d(E1+E′2)

d|p1| will be evaluated. The quantity, d(E1 + E′2), is used rather than dE1,
because both E1 and E′2 contain the term |p1|. The phase space factor becomes, (with the energy
δ function eliminated),

dΦ2(P ; p1, p2) =
|p1|2

e1e′2

d|p1|
d(E1 + E′2)

dΩ1 (in general), (73)

giving the partial width as,

dΓ =
S

32π2m
|M|2 |p1|2

E1E′2

d|p1|
d(E1 + E′2)

dΩ1 (in general). (74)

2.1.2 Griffiths phase space method

Griffiths [2] eliminates the δ function by making use of the formula,

δ[g(x)] =
n∑
j=1

δ(x− xj)
|g′(xj)|

, (75)

where the sum over j represents the sum over the zeroes xj of the function g(x). The term
g′(xi) is the derivative of the function g(x), evaluated at the zero, xj . In the delta function,
δ(E3 − E1 − E′2) ≡ δ[g(x)], we set,

g(x) ≡ g(|p1|) = E3 − E1 − E′2
= E3 −

√
p2

1 +m2
1 −

√
(p3 − p1)2 +m2

1 . (76)
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The zeroes, p1i, are obtained by setting

g(|p1|) = E3 −
√

p2
1 +m2

1 −
√

(p3 − p1)2 +m2
1 ≡ 0 . (77)

The derivative is

g′(xi) ≡
dg(|p1|)
d|p1|

= −d(E1 + E′2)
d|p1|

, (78)

so that

δ(E3 − E1 − E′2)d|p1| =
δ(|p1| − |p1i|)d|p1|

d(E1+E′2)
d|p1|

=
d|p1|

d(E1 + E′2)
, (79)

which is the same result obtained with the Ho-Kim phase space method. The phase space factor
and the decay width are evaluated in a particular frame by evaluating d|p1|

d(E1+E′2) in that frame.
The cm frame, in which the decaying particle is at rest, is the most logical choice of frame.
Thus,

p3 = 0 and p1 = −p2 , (80)

and E′2 =
√
|p1|2 +m2

2, giving,

[
d(E1 + E′2)

d|p1|

]
c

= |p1|
E1 + E′2
E1E′2

. (81)

Since E1 + E′2 = E3 = m and |p1| = |p2| ≡ |pf | in the cm frame,

dΦ2(P ; p1, p2) =
|p1|2

e1e′2

d|p1|
d(E1 + E′2)

dΩ1

=
|p1|2

e1e′2

E1E
′
2

m
dΩ1

=
|p1|

4(2π)6 m
dΩ1 . (82)

Assuming no angular dependence in M, the integral
∫
dΩ1 = 4π, gives the width in the cm

frame,

Γc =
S

2m
|M|2(2π)4dΦ2(P ; p1, p2) =

S|pf |
8πm2

|M|2 . (83)

This is only valid if M has no angular dependence. This agrees with references [2] (equations
6.30, 6.32) and [10] (p. 103) (with dΩ = 4π). The units can now be verified. . There are 3
external lines in the Feynman diagram, so thatM has units of GeV. The units ofM2 cancel m2

in the denominator, leaving Γ with the correct units of GeV. Using the result from the following
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section,

|p2| = |pf | =
1

2m3

√
m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 , (84)

which is equivalent to solving equation (77) for the zeroes. The decay rate is written

Γc =
S

16πm3
3

|M|2
√
m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 . (85)

with m ≡ m3. Again, this is only valid if M has no angular dependence. This agrees with
reference [10] (p. 103).

2.2 Decay energies and momenta

The energy E2, and 3-momentum p2, of the decay,

3→ 1 + 2 (86)

may be expressed in terms of the masses of the three particles. Conservation of 4-momentum
gives

p2
3 = (p1 + p2)2

= m2
3 = p2

1 + p2
2 + 2p1.p2 = m2

1 +m2
2 + 2(E1E2 − p1.p2)

= m2
1 +m2

2 + 2(E1E2 + p2
1) (because p1 = −p2 in the cm frame)

= m2
1 +m2

2 + 2(E1E2 + E2
2 −m2

2)
= m2

1 +m2
2 + 2E2(E1 + E2)− 2m2

2 = m2
1 −m2

2 + 2E2(E1 + E2) . (87)

Also,

p2
3 = (p1 + p2)2

= m2
3 = (E1 + E2)2 − (p1 + p2)2 , (88)

giving,

m3 = E1 + E2 , (89)

since p1 + p2 = 0 in the cm frame. Substituting equation (89) into equation (87) leads to

m2
3 = m2

1 −m2
2 + 2E2m3 , (90)

⇒ E2 =
m2

2 +m2
3 −m2

1

2m3
. (91)

The magnitude of the 3-momentum is given by

|p2| =
√
E2

2 −m2
2
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=

√√√√(m2
2 +m2

3 −m2
1

2m3

)2

−m2
2 . (92)

Expanding gives

|p2| =
1

2m3

√
m4

1 +m4
2 +m4

3 − 2m2
1m

2
2 − 2m2

1m
2
3 − 2m2

2m
2
3 . (93)

2.3 Two - body reaction producing one body

We can relate the decay width of the process,

3→ 1 + 2 ,

to the cross section for

1 + 2→ 3 .

The cross section is given by equation (19),

dσ =
S

4F
|M|2(2π)4dΦn(p1 + p2; p3)

=
S

4F
|M|2(2π)4δ4(p1 + p2 − p3)

d3p3

(2π)32E3
(in any frame),

=
Sπ

4|p1|
√
s
|M|2δ(E1 + E2 − E3)δ3(p1 + p2 − p3)

d3p3

E3
(cm frame), (94)

using equation (26). In the cm frame, we have E3 = m3 ≡ m =
√
s and p1 = −p2, finally giving

the cross section, (with S = 1 for the above reaction 1 + 2→ 3),

dσ =
π

4m2|p1|
|M|2δ(E1 + E2 − E3) , (95)

with E1 =
√

p2
1 +m2

1 and E2 =
√

p2
1 +m2

2. We now relate this cross section to the decay width.
Substituting |M|2 from equation (85), into equation (95), gives the relation between decay width
and cross section as,

dσ =
2π2

S|p1|2
Γ δ(E1 + E2 − E3) . (96)

The units of δ(E1 + E2 − E3) are GeV−1, cancelling the GeV units of Γ, so that the units of σ
come out correctly as GeV−2.

Sometimes the delta function is written a little differently, in terms of δ(s−m2). In the cm
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frame,
√
s = E1 + E2 ≡W 2. Thus δ(s−m2) = δ(W 2 −m2). Using the result [2],

δ(x2 − a2) =
1

2|a|
[δ(x− a) + δ(x+ a)] , (97)

gives

δ(s−m2) = δ[(E1 + E2)2 −m2] =
1

2m
[δ(E1 + E2 −m) + δ(E1 + E2 +m)] . (98)

However, we cannot have E1 + E2 = −m, so that the second term does not contribute, [16] (p.
15), [3] (p. 151), giving only

δ(s−m2) =
1

2m
δ(E1 + E2 −m) . (99)

Thus, the relation between the decay width and the cross section can also be written

dσ =
4π2m

S|p1|2
Γ δ(s−m2) . (100)

Suppose the decay products are both massless (e.g. H → γγ). Recall that in the cm frame,
the momentum of the decay products is |p1| = |p2|. Also, the mass of the decaying particle is
E3 = m3 ≡ m. By energy conservation (with E = |p| for photons), we have

m = 2|p| . (101)

Substituting |p| = m/2 gives,

dσ =
16π2

Sm
Γ δ(s−m2) . (102)

Now, if the particles have spin, then it must be averaged over the initial spin states S1 and S2

and summed over the final spin state S3 [7] (p. 114). This brings in an extra factor

dσ =
2S3 + 1

(2S1 + 1)(2S2 + 1)
16π2

Sm
Γ δ(s−m2) , (103)

which is our final result. This gives the results of several other authors. For example, Norbury
[17] considered the decay of a Higgs boson into two photons,

H → γ + γ ,

where the statistical factor is S = 1/2!, because there are 2 particles in the final state. The spin
of the Higgs is SH ≡ S3 = 0, and the spin of the photons are S1 = S2 = Sγ = 1. However,
the factor, 1

2Sγ+1 = 1/3, is only correct for massive spin 1 states. Photons loose one degree of
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freedom, meaning that the factor should actually be 1/2. Substituting gives

dσ =
8π2

m
Γ δ(s−m2) , (104)

in agreement with [17]. Another example is the decay of a vector boson B into an electron-
positron pair [3] (p. 151),

B → e+ + e− .

Here, S = 1 because there are no identical particles in the final state. Also, the spins are
SA ≡ SB = 1, and S1 ≡ Se+ = 1/2, and S2 ≡ Se− = 1/2. Substituting, gives

dσ =
12π2

m
Γ δ(s−m2) , (105)

in agreement with [3] (p. 151). Finally, note that Vidovic et al [18] have an extra factor of 2 in
their equation (46). However, this results from the definition of their equation (21).

2.3.1 Calculation using de Wit and Smith formula

De Wit and Smith [7] (p. 114) have also derived a relation between the cross section and decay
width that is more general than our result. In this section, we show that the de Wit and Smith
formula, reduces exactly to our result. They consider the reaction

a+ b→ A→ X , (106)

where A has decayed into X, i.e. A→ X. Their result is

σ(a+ b→ X) =
16πm4

A

Sλ(m2
A,m

2
a,m

2
b)

Γ(A→ X)Γ(A→ a+ b)
(s2
A −m2

A)2 +m2
AΓ2

, (107)

where S is the same statistical factor as the present work and λ(m2
A,m

2
a,m

2
b) is also the same

as used herein, namely

λ(m2
A,m

2
a,m

2
b) = 4|p1c|2s = m4

A , (108)

where we have used equation (101). The above result is valid for arbitrary width. Now, examine
the narrow width approximation. A narrow width corresponds to a large lifetime. In other words,
the narrow width approximation has as its limit the decaying particle not decaying. That is, the
decay A→ X does not proceed. Thus, the symbol X in the above equations should be replaced
with A. In the narrow width approximation, one has [7] (p. 112)

1
π

mAΓ(A→ X)
(s2
A −m2

A)2 +m2
AΓ2

≈ δ(sA −m2
A) . (109)
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Substituting equations (108) and (109) into equation (107) gives

σ(a+ b→ A) =
16π2

SmA
Γ(A→ a+ b) δ(sA −m2

A) , (110)

which is the same as our result in equation (103).

3 Non - relativistic two - body kinematics

Some key results in this paper will be in finding the relation between the lab angle and the lab
momenta for 2 - body final state particles. An important outcome is that for a given lab angle,
there will be two corresponding momentum values, which result from two angles in the center
of momentum or projectile frames. See equations (146) and (147). This is a crucial point for 3 -
dimensional transport codes, because for a given angle in the lab (spacecraft) frame, there will be
two particles arriving from the center of momentum or projectile frames with different energies.
The differential cross section for the production of each particle must be added incoherently to
form the differential cross section in the lab frame. This section examines these results from
a non - relativistic point of view. This will enable easier understanding of the corresponding
relativistic results, which will be derived later.

3.1 Reactions between elementary particles

First, examine collisions from a more general point of view. Consider the collision of elementary
particles given in the reaction

1 + 2→ 3 + 4 , (111)

where the numbers represent the particles involved in the collision. At energies comparable to the
masses of the particles, relativistic kinematics is needed to accurately analyze the collisions. This
section considers low energy collisions, and will use non-relativistic kinematics. By conservation
of mass

m1 +m2 = m3 +m4 . (112)

Momentum is always conserved,

p1 + p2 = p3 + p4 (113)

We don’t need initial i and final f subscripts now because particles 1 and 2 are automatically in
the initial state and particles 3 and 4 are automatically in the final state. For elastic collisions,
kinetic energy will be conserved,

T1 + T2 = T3 + T4 . (114)
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Remember that the kinetic energy and momentum can be expressed in terms of each other via

T =
p2

2m
, (115)

which is the non-relativistic version of kinetic energy. Also, note that we will often use the
identity

|p|2 ≡ p2 , (116)

where |p| is the magnitude of the momentum vector p. In particle reactions like (111), particles 1
and 2 are usually produced in a particle accelerator and are made to collide with each other. The
mass and energy or momentum of particles 1 and 2 is always known. Thus, m1,m2, T1, T2,p1,p2

are always known.
In a fixed target accelerator, the target particle 2 is at rest and the projectile particle 1 is

fired into it. The collection of projectile particles is often called the beam. The collection of
target particles is often just called the target. Thus, the moving accelerator beam is fired into a
target at rest. The whole accelerator complex is called a laboratory or simply a lab. Thus, the
target particle is not moving in the lab. We often call this reference frame in which particle 2 is
at rest simply the lab frame or the target frame. So, in a fixed target accelerator we have

p2 = 0 and T2 = 0 . (117)

In a colliding beam accelerator, often called a collider, both particles 1 and 2 are moving in
opposite directions and they are fired into each other. However, again we will always know the
masses and energies of both of these particles.

In either case, particles 3 and 4 are the reaction products and their properties are studied
in great detail. These properties include their mass, charge, spin, and other quantum numbers,
and also their kinematic properties such as their energy or momentum and also the angle from
which they emerge from the collision.

3.1.1 Mandelstam variables

If we write down the x and y components of the momentum conservation equation (113), we can
then deduce the angles with which particles 3 and 4 emerge. However, this can involve quite a
lot of algebra. An easier method is to use the so-called Mandelstam variables, which are defined
in their non - relativistic form as

s ≡ (p1 + p2)2 = (p3 + p4)2 , (118)
t ≡ (p1 − p3)2 = (p4 − p2)2 , (119)
u ≡ (p1 − p4)2 = (p3 − p2)2 . (120)

These are just the usual relativistic Mandelstam variables with 4-vectors replaced by 3-vectors.
Note that s is related to the total energy of the system and t and u are momentum transfers.
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The square of the sum of any two 3-vectors is

(A + B)2 = A2 + B2 + 2A ·B ,

= A2 + B2 + 2|A||B| cos θ (121)

where θ is the angle between the vectors, as seen in figure 1. The Mandelstam variables can
then can be written

s = p2
1 + p2

2 + 2|p1||p2| cos θ12 = p2
3 + p2

4 + 2|p3||p4| cos θ34 , (122)
t = p2

1 + p2
3 − 2|p1||p3| cos θ13 = p2

2 + p2
4 − 2|p2||p4| cos θ24 , (123)

u = p2
1 + p2

4 − 2|p1||p4| cos θ14 = p2
2 + p2

3 − 2|p2||p3| cos θ23 , (124)

where θjk is the angle between particle j and k, as shown in figure 2.

A

B

B cosθ

θ

Figure 1: Scalar product between two vectors A and B is given by A.B = AB cos θ, where A
and B are the vector magnitudes. Note that the angle θ is defined as the angle between the
vectors arranged tail to tail.

Pj

Pk cosθjk

θjk

Pk

Figure 2: The angle θjk is the angle between the vectors pj and pk connected tail to tail as in
figure 1. The scalar product is given by pj .pk = |pj ||pk| cos θjk.

3.1.2 Lab frame

As discussed above, the lab frame is the frame in which the target particle 2 is at rest as in
equation (117). With p2l = T2l = 0, our conservation equations become

p1l = p3 + p4 (125)
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and

m1 +m2 = m3 +m4 , (126)

and if the collision is elastic,

T1l = T3 + T4 . (127)

The momentum conservation equation can be written in terms of its components as

x component : m1v1l = m3v3 cos θ13 +m4v4 cos θ14 , (128)
y component : 0 = m3v3 sin θ13 −m4v4 sin θ14 , (129)

or as

x component : |p1l| = |p3| cos θ13 + |p4| cos θ14 , (130)
y component : 0 = |p3| sin θ13 − |p4| sin θ14 . (131)

Given that the target particle 2 is at rest, then it is meaningless to define an angle relative to
particle 2, since angles are defined between lines and not a line and a point. Thus, in the frame
in which particle 2 is at rest, there will be no angle appearing that contains particle 2. That is,
there will be no angle θj2. Setting p2l = 0 gives the lab frame Mandelstam variables

s = p2
1l = p2

3 + p2
4 + 2|p3||p4| cos θ34 , (132)

t = p2
1 + p2

3 − 2|p1||p3| cos θ13 = p2
4l , (133)

u = p2
1 + p2

4 − 2|p1||p4| cos θ14 = p2
3l . (134)

The portions of these equations that do not have a l subscript are true in any frame. The angles
are shown in figures 1 - 4. Note that

θ34 = θ13 + θ14 . (135)

3.1.3 Proof of the relation t = (p1 − p3)2 = |p4l|2

Using the x and y components of the momentum conservation equation, one can prove the
Mandelstam variable relation

t ≡ (p1 − p3)2 = |p4l|2 , in the lab frame where p2l = 0. (136)

This statement will now be proved. Conservation of momentum is

p1 + p2 = p3 + p4 . (137)
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θ13l1

3

4

2

θ14 l

Figure 3: Definition of angles in the lab frame. θ14l is the recoil angle of the target. The angle
between the final state particles is θ34 = θ13 + θ14. Note that the angle θ is defined as the angle
between the vectors arranged tail to tail.

1

3

4

2θ13c
θ23c

θ14 c
θ24 c

Figure 4: Definition of angles in the cm frame. Note that θ13c = θ24c and θ14c = θ23c. The angle
between the final state particles is θ34 = θ13 + θ14. In the cm frame, θ34 = π. Note that the
angle θ is defined as the angle between the vectors arranged tail to tail.

All quantities are now to be considered as lab frame quantities. The components are

x component : |p1| = |p3| cos θ13 + |p4| cos θ14 , (138)
y component : 0 = |p3| sin θ13 − |p4| sin θ14 . (139)

Now eliminate |p4| and θ14. The y component equation gives

sin θ14 =
|p3| sin θ13

|p4|
. (140)

Use cos θ = ±
√

1− sin2 θ and substitute into the x component,

|p1| = |p3| cos θ13 ± |p4|
√

1− |p3|2 sin2 θ13

|p2
4|
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= |p3| cos θ13 ±
√
|p4|2 − |p3|2 sin2 θ13 . (141)

This gives

(|p1| − |p3| cos θ13)2 = |p4|2 − |p3|2 sin2 θ13

= |p1|2 − 2|p1||p3| cos θ13 + |p3|2 cos2 θ13 , (142)

so that

|p4|2 = |p1|2 − 2|p1||p3| cos θ13 + |p3|2 = (p1 − p3)2 . (143)

Note that when solving collision problems with the x and y components of momentum conserva-
tion, one always ends up with the Mandelstam variable relation anyway, if angles are of interest.
Thus, it is good practice to simply start with Mandelstam variables when angles are involved.
Squaring the quantity,

(p1 − p3)2 ≡ t , (144)

will directly give the angle θ13. Similarly, squaring the quantity,

(p1 − p4)2 ≡ u , (145)

will directly give the angle θ14. Now, a very interesting result is that in the lab frame, for
reaction (111), the speed or energy of particle 3 is given in terms of the angle at which particle 3
emerges, namely θ13. Similarly, the speed or energy of particle 4 is given in terms of the angle at
which particle 4 emerges, namely θ14. In other words, the angles of the final particles determines
their energy and vice-versa.

3.2 Relations between momentum and angle of scattered particle

3.2.1 Center of momentum frame

Consider the reaction,

1 + 2→ 3 + 4

in the cm frame. As will be shown, the momentum of particle 3 or 4 is not determined by the
angle at which it emerges from the collision.

3.2.2 Lab frame

In the lab frame, the momentum of particle 3 or 4 does depend on the angle at which it emerges
from the collision. This is shown below. Again, consider the elastic reaction

1 + 2→ 3 + 4 ,
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where the target particle 2 is at rest in the lab and the projectile particle 1 is fired into the
stationary target. Assume that we know the value of the momentum of particle 1 to be p1l.
One can prove the following useful results.

(a) The momentum of particles 3 and 4 can be expressed in terms of their scattering angles
θ13l and θ14l, where θ1il is the angle between the momentum of particle i and the incident
beam direction of particle 1, as measured in the lab frame. One can show that

|p3l| = |p1l|
m3

(
cos θ13l ±

√
m2m4
m1m3

− sin2 θ13l

)
m3 +m4

(146)

and

|p4l| = |p1l|
m4

(
cos θ14l ±

√
m2m3
m1m4

− sin2 θ14l

)
m3 +m4

. (147)

Note that |p4l| is the same as |p3l|, except for the interchange of the particle labels 3↔ 4.

(b) We will evaluate |p3l| and |p4l| for an elastic billiard ball collision when m1 = m3 & m2 =
m4 and also when m1 = m4 & m2 = m3.

(c) Notice that the solutions for |p3l| and |p4l| are double valued. For the case of an elastic
billiard ball collision when m1 = m3 & m2 = m4, we will interpret the two solutions.

(d) We shall evaluate |p3l(θ13l = 0, π, π2 )| and |p4l(θ14l = 0, π, π2 )|. We shall also work out
these expressions when m1 = m3 & m2 = m4.

(e) We shall interpret the solutions |p3l(θ13l = π/2)| and |p4l(θ14l = π/2)| when m1 =
m3 & m2 = m4.

(f) Consider a 1-dimensional collision where θ13l = 0 or π and θ14l = 0 or π. We have already
evaluated |p3l(θ13l = 0, π)|, and |p4l(θ14l = 0, π)| for an elastic billiard ball collision when
m1 = m3 & m2 = m4. We will interpret the results for the three special cases i)
m1 >> m2, ii) m1 = m2, and iii) m1 << m2.

We shall now prove the statements given above. All quantities are assumed to be lab frame
quantities.

(a) Conservation of momentum, mass and energy is

p1 + p2 = p3 + p4 , (148)
m1 +m2 = m3 +m4 , (149)
T1 + T2 = T3 + T4 . (150)

We use the Mandelstam variable,

t ≡ (p1 − p3)2 = (p4 − p2)2
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= |p1|2 + |p3|2 − 2|p1||p3| cos θ13

= |p4|2, in the lab frame where p2 = 0 . (151)

Note that

|p|2 ≡ p2 . (152)

Conservation of kinetic energy can be written (with T2 = 0),

|p1|2

2m1
=
|p3|2

2m3
+
|p4|2

2m4
, (153)

which gives

p2
4 = m4

(
|p1|2

m1
− |p3|2

m3

)
, (154)

so that the Mandelstam variable t becomes

|p1|2 + |p3|2 − 2|p1||p3| cos θ13 =
m4

m1
p2

1 −
m4

m3
p2

3 , (155)

from which we get the quadratic equation for |p3|,

p2
3

(
1 +

m4

m3

)
− 2|p1||p3| cos θ13 + |p1|2

(
1− m4

m1

)
= 0 . (156)

A general quadratic equation can be written

ax2 + bx+ c = 0 , (157)

with solution

x =
−b±

√
b2 − 4ac

2a
. (158)

For our equation, we have

b2 − 4ac = 4|p1|2 cos2 θ13 − 4|p1|2
(

1− m4

m1

)(
1 +

m4

m3

)
= 4|p1|2

[
cos2 θ13 −

(
1− m4

m1

)(
1 +

m4

m3

)]
= 4|p1|2

[
cos2 θ13 − 1 +

m4

m1
− m4

m3
+

m2
4

m1m3

]

= 4|p1|2
[
− sin2 θ13 +

1
m1m3

(m3m4 −m1m4 +m2
4)
]
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= 4|p1|2
[
m4

m1m3
(m3 −m1 +m4)− sin2 θ13

]
= 4|p1|2

(
m2m4

m1m3
− sin2 θ13

)
, (159)

where we have used conservation of mass, m3−m1 +m4 = m2, in the last equation. Thus,
the solution to the quadratic equation is

|p3| =
2|p1| cos θ13 ± 2|p1|

√
m2m4
m1m3

− sin2 θ13

2(1 + m4
m3

)

= |p1|
m3

(
cos θ13 ±

√
m2m4
m1m3

− sin2 θ13

)
m3 +m4

, (160)

which is the desired result. We could work everything out again to determine |p4|. How-
ever, rather than going through all the algebra again, it should be obvious that our answer
is the same as that obtained previously except that subscript 3 is replaced by 4. Thus, we
immediately deduce that

|p4| = |p1|
m4

(
cos θ14 ±

√
m2m3
m1m4

− sin2 θ14

)
m3 +m4

. (161)

The Mandelstam variable that will appear is

u ≡ (p1 − p4)2 = |p3|2 , in the lab frame where p2 = 0. (162)

(b) If m1 = m3 & m2 = m4 (elastic billiard ball collision), the above results reduce to

|p3| = |p1|
m1

(
cos θ13 ±

√
m2

2

m2
1
− sin2 θ13

)
m1 +m2

,

|p4| = |p1|
m2(cos θ14 ± cos θ14)

m1 +m2

= |p1|
2m2 cos θ14

m1 +m2
or 0. (163)

If m1 = m4 & m2 = m3, we get

|p3| = |p1|
m2 (cos θ13 ± cos θ13 )

m1 +m2

= |p1|
2m2 cos θ13

m1 +m2
or 0, (164)
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and

|p4| = |p1|
m1

(
cos θ14 ±

√
m2

2

m2
1
− sin2 θ14

)
m1 +m2

. (165)

(c) For m1 = m3 & m2 = m4, we had

|p3| = |p1|
m1

(
cos θ13 ±

√
m2

2

m2
1
− sin2 θ13

)
m1 +m2

, (166)

and

|p4| = |p1|
2m2 cos θ14

m1 +m2
or 0. (167)

The identification, m1 = m3 & m2 = m4, means that particle 3 is the scattered projectile
and particle 4 is the recoil target. First, we interpret the |p4| = 0 solution. This implies
that p4 = 0. We already have p2 = 0 in the lab frame. Thus, conservation of momentum
p1 + p2 = p3 + p4 implies that

p1 = p3 , (168)

and together with

p2 = p4 = 0 , (169)

this means that the projectile misses the target. Thus, the target remains undisturbed
(p4 = 0) and the projectile continues on with its original momentum (p3 = p1) as if
nothing happened. Obviously, the other solution |p4| = |p1| 2m2 cos θ14

m1+m2
signifies a real

collision, not a miss. Now we interpret the |p3| solutions. Firstly, we consider whether
there is a miss solution as above. The miss solution corresponded to p1 = p3 which implies
that θ13 = 0. Thus, if θ13 6= 0, a real collision has occurred and the momentum |p3| is
simply a double valued function of the scattering angle θ13, and no further interpretation
is warranted. We look at the θ13 = 0 solution. This gives

|p3| = |p1| (170)

or

|p3| = |p1|
m1 −m2

m1 +m2
. (171)

Clearly |p3| = |p1| corresponds to the miss solution and |p3| = |p1| m1−m2
m1+m2

corresponds to
the real collision.
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(d) Using equations (146) and (147), we obtain

|p3(θ13 = 0)| = |p1|
m3

m3 +m4

(
1±

√
m2m4

m1m3

)
,

= |p1|
m1 ±m2

m1 +m2
, when m1 = m3 & m2 = m4 ,

(172)

|p3(θ13 = π)| = −|p1|
m3

m3 +m4

(
1∓

√
m2m4

m1m3

)
,

= −|p1|
m1 ∓m2

m1 +m2
, when m1 = m3 & m2 = m4 ,

(173)

|p3(θ13 = π/2)| = ±|p1|
m3

m3 +m4

√
m2m4

m1m3
− 1 ,

= ±|p1|
√
m2 −m1

m1 +m2
, when m1 = m3 & m2 = m4 ,

(174)

|p4(θ14 = 0)| = |p1|
m4

m3 +m4

(
1±

√
m2m3

m1m4

)
,

= |p1|
2m2

m1 +m2
or 0 , when m1 = m3 & m2 = m4 ,

(175)

|p4(θ14 = π)| = −|p1|
m4

m3 +m4

(
1∓

√
m2m3

m1m4

)
,

= −|p1|
2m2

m1 +m2
or 0 , when m1 = m3 & m2 = m4 ,

(176)

and

|p4(θ14 = π/2)| = ±|p1|
m4

m3 +m4

√
m2m3

m1m4
− 1 ,

= 0 , when m1 = m3 & m2 = m4 . (177)

Note that solutions which give negative |p| are unphysical and must be discarded.

(e) When m1 = m3 and m2 = m4, we found the physical solutions were

|p3(θ13 = π/2)| = |p1|
√
m2 −m1

m1 +m2
, (178)
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and

|p4(θ14 = π/2)| = 0. (179)

This says that the target can never be scattered into θ14 = π/2. The projectile can only
be scattered into θ13 = π/2 if m2 > m1. This makes sense. It is saying that the projectile
can only be scattered into θ13 = π/2 if it is lighter than the target.

(f) When m1 = m3 and m2 = m4, we obtained

|p3(θ13 = 0)| = |p1| or |p1|
m1 −m2

m1 +m2
, (180)

|p3(θ13 = π)| = −|p1| or |p1|
m2 −m1

m1 +m2
, (181)

|p4(θ14 = 0)| = |p1|
2m2

m1 +m2
or 0, (182)

and

|p4(θ14 = π)| = −|p1|
2m2

m1 +m2
or 0. (183)

We can never have the magnitude of a vector being a negative quantity, and so these
solutions must be dismissed as unphysical. Also, we have already decided above that the
cases |p3(θ13 = 0)| = |p1| and |p4| = 0 correspond to the miss solution. Discarding the
unphysical and miss solutions, we are left with

|p3(θ13 = 0)| = |p1|
m1 −m2

m1 +m2
, for m1 ≥ m2 , (184)

|p3(θ13 = π)| = |p1|
m2 −m1

m1 +m2
, for m2 ≥ m1 , (185)

and

|p4(θ14 = 0)| = |p1|
2m2

m1 +m2
. (186)

where we have indicated in parentheses the allowed mass values for physically acceptable
solutions. Writing |pi| = mi|vi| gives (with m1 = m3 and m2 = m4)

|v3(θ13 = 0)| = |v1|
m1 −m2

m1 +m2
, for m1 ≥ m2 , (187)

|v3(θ13 = π)| = |v1|
m2 −m1

m1 +m2
, for m2 ≥ m1 , (188)

|v4(θ14 = 0)| = |v1|
2m1

m1 +m2
. (189)
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For m1 >> m2, we have

|v3(θ13 = 0)| ≈ |v1| , (190)
|v4(θ14 = 0)| ≈ 2|v1| . (191)

That is, the projectile continues on at the same speed and the target moves off at twice
the speed of the projectile, both moving in the same direction as the original projectile.

For m1 = m2, we have

|v3(θ13 = 0 or π)| ≈ 0 , (192)
|v4(θ14 = 0)| ≈ |v1| . (193)

That is, the projectile stops and the target moves off at the speed of the projectile, in the
same direction as the projectile.

For m1 << m2, we have

|v3(θ13 = π)| ≈ |v1| , (194)
|v4(θ14 = 0)| ≈ 0 . (195)

That is, the projectile bounces off from the target with the same speed but in the opposite
direction, and the massive target remains stationary.

3.2.3 Qualitative understanding of the |p3l| solutions

We now develop a qualitative understanding of the two solutions, namely for a fixed angle θ13l,
there are two solutions for |p3l|. Consider the case of a billiard ball collision where a projectile
billiard ball scatters off a target ball. In the above example, this is the case where m1 = m3 and
m2 = m4 (elastic billiard ball collision), which was part (b) of the example. For that case, the
momentum of particle 3 reduced to

|p3l| = |p1l|
m1

(
cos θ13l ±

√
m2

2

m2
1
− sin2 θ13l

)
m1 +m2

. (196)

Write this as

|p+
3l| = |p1l|

m1

(
cos θ13l +

√
m2

2

m2
1
− sin2 θ13l

)
m1 +m2

, (197)

|p−3l| = |p1l|
m1

(
cos θ13l −

√
m2

2

m2
1
− sin2 θ13l

)
m1 +m2

. (198)
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The solution |p−3l| allows for a negative value. This solution is obviously unphysical and may be
discarded. For |p−3l| to be positive, we must have

cos θ13l >

√
m2

2

m2
1

− sin2 θ13l ,

⇒ cos2 θ13l >
m2

2

m2
1

− sin2 θ13l =
m2

2

m2
1

+ cos2 θ13l − 1 ,

⇒ 1 >
m2

2

m2
1

,

⇒ m1 > m2 .

Only if this is true, do we get both solutions |p+
3l| and |p−3l|. Otherwise, we only get the one

solution |p+
3l|. So given that m1 > m2, the question remains as to why we get two solutions |p±3l|

at the same angle θ13l for a fixed incident energy. Note that the two solutions are distinguished
by their outgoing energy, or speed, or momentum magnitude. This is illustrated in figure 5,
where a more massive projectile scatters off a less massive target. It can clearly be seen that
the same scattering angle can occur for different impact parameters. If the projectile hits the
target at small impact parameter then it will impart a relatively large amount of its momentum
to the target and emerge with a relatively small speed at angle θ.

On the other hand, if the projectile hits the target at a large impact parameter then it will
impart a relatively small amount of its momentum to the target and emerge with a relatively
higher speed at the same angle θ. Thus, the reason as to why there are two different momenta
associated with the same scattering angle is because there can be two different impact parameters
associated with that angle. Obviously, if we do an experiment and actually roll one billiard ball
into another then there will be only one emerging momentum depending on the collision impact
parameter. However, when we calculate a cross section, we must sum over all impact parameters.
Thus, a cross section calculation will be the result of many billiard ball collisions at a variety
of integrated impact parameters. The fact that the same lab angle gives rise to two different
lab energies is also related to transformation from the cm frame to the lab frame. Later, we
shall find that two different angles in the cm frame can give rise to the same angle in the lab
frame. From figure 5, it is clear that the two different impact parameters will correspond to two
different angles in the cm frame.

3.3 Relations between initial and final momenta in lab and cm frames

In this section, we develop some further useful results, involving relations between the initial
and final momenta in the lab and cm frames as well as relations between angles.

3.3.1 Lab frame

Consider the elastic reaction

1 + 2→ 3 + 4 ,
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large b

small b

small E

large E

θ

θ

Figure 5: Elastic billiard ball collision where the mass of the projectile is greater than the mass
of the target. b is the impact parameter. The balls are imagined to have the same density and
so the more massive ball is drawn larger. (If the balls are of different density and have the same
size, the dynamics shown in this figure are not altered.

where the target particle 2 is at rest in the lab and the projectile particle 1 is fired into the
stationary target. We will derive a formula relating the momenta of particles 3 and 4 with
the relative angle θ34 between particles 3 and 4. The formula will also contain the masses.
This is much easier to work out by squaring the conservation of momentum equation, rather
than breaking it up into components. After deriving this formula, we will show that it predicts
θ34 = 90◦ when all the particle masses are equal.

We proceed as follows. Conservation of momentum is

p1 + p2 = p3 + p4 . (199)

Squaring gives the non-relativistic Mandelstam variable,

s ≡ (p1 + p2)2 = (p3 + p4)2

= |p3|2 + |p4|2 + 2|p3||p4| cos θ34

= |p1l|2 , in the lab frame where p2l = 0 . (200)

Conservation of kinetic energy can be written (with T2l = 0),

|p1l|2

2m1
=
|p3|2

2m3
+
|p4|2

2m4
, (201)

so that the Mandelstam variable becomes

m1

(
|p3|2

m3
+
|p4|2

m4

)
= |p3|2 + |p4|2 + 2|p3||p4| cos θ34 , (202)
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which is the desired formula. When m1 = m2 = m3 = m4, this becomes

0 = cos θ34 ⇒ θ34 = 90◦ . (203)

3.3.2 Center of momentum frame

Again, consider the elastic reaction

1 + 2→ 3 + 4

but now we will analyze the reaction in the cm frame. Assume that we know the value of the
momentum of particle 1 in the cm frame to be p1c. We can obtain some useful results.

(a) We will work out a formula for |p3c| as a function of |p1c| and show that it does not depend
on any angle.

(b) We will do the same for |p4c|.

(c) We will show that the scattering angles are related by θ13c = θ24c.

We proceed as follows.

(a) The non-relativistic Mandelstam variables are

s ≡ (p1 + p2)2 = (p3 + p4)2 , (204)
t ≡ (p1 − p3)2 = (p4 − p2)2 , (205)
u ≡ (p1 − p4)2 = (p3 − p2)2 , (206)

and conservation of kinetic energy is

p2
1

m1
+

p2
2

m2
=

p2
3

m3
+

p2
4

m4
. (207)

Now, specialize to the cm frame, where

p1c + p2c = 0 = p3c + p4c , (208)
⇒ |p1c| = |p2c| ≡ |pic| and |p3c| = |p4c| ≡ |pfc| . (209)

Eliminate |p2c| and |p4c| from the conservation of energy equation, giving

p2
1c(

1
m1

+
1
m2

) = p2
3c(

1
m3

+
1
m4

) , (210)

p2
1c(
m1 +m2

m1m2
) = p2

3c(
m3 +m4

m3m4
) , (211)

⇒ p2
3c = p2

1c

m3m4(m1 +m2)
m1m2(m3 +m4)

. (212)
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Define

µ2 ≡ m3m4(m1 +m2)
m1m2(m3 +m4)

, (213)

which gives

|p3c| = µ|p1c| , (214)

or

|pfc| = µ|pic| , (215)

which is the desired result, giving the relation between the momentum of particle 3 in
terms of the incident momentum. No angle appears in these formulas.

(b) In the cm frame, |p1c| = |p2c| ≡ |pic| and |p3c| = |p4c| ≡ |pfc| so that

|p4c| = µ|p2c|
= µ|p1c| . (216)

(c) The non-relativistic Mandelstam t variable is

t ≡ (p1 − p3)2 = (p4 − p2)2

= p2
1 + p2

3 − 2|p1||p3| cos θ13

= p2
2 + p2

4 − 2|p2||p4| cos θ24 . (217)

In the cm frame, this becomes

t = p2
i + p2

f − 2|pi||pf | cos θ13

= p2
i + p2

f − 2|pi||pf | cos θ24 ,

⇒ cos θ13c = cos θ24c ,

⇒ θ13c = θ24c .

4 Relativistic two body kinematics

If the projectile or center of momentum frame moves fast enough, then two different angles in the
center of momentum or projectile frames get boosted to only a single angle in the lab frame. In
the lab, these two boosts will be distinguished by different lab energies or momenta. This is very
important for 3 - dimensional space radiation transport codes which require cross sections in the
lab (spacecraft) frame, which must be added incoherently from the two center of momentum or
projectile frame angles. For a 2 - body final state, the formula which gives this double - valued
lab momentum in terms of the lab angle, is given in equation (272). Other results, such as
relating Mandelstam variables to energy and momentum variables, are also derived.
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4.1 Introduction

In this section, we wish to consider reactions of the type

1 + 2→ 3 + 4 + 5 + · · · ,

where the numbers denote the particles and the initial state always consists of just two bodies,
whereas the final state can contain any number of particles. A 2 - body final state reaction is

1 + 2→ 3 + 4 , (218)

whereas a 3 - body final state reaction is

1 + 2→ 3 + 4 + 5 . (219)

The reaction kinematics are the same as shown in the previous figures 3 and 4. We are interested
in calculating angular and spectral distributions for any of the final state particles. Thus, our
primary interest is in the energy or angle of the jth final state particle,

Ej or θj ,

which give us the cross sections of primary interest,

dσ

dEj
or

dσ

dθj
.

If Ej and θj are dependent on each other, then dσ
dEj

and dσ
dθj

are also dependent on each other

and the doubly differential cross section, d2σ
dEjθj

has no meaning. In this case, the relationship

between Ej and θj is used to convert between dσ
dEj

and dσ
dθj

.

4.1.1 3 - body final state

When there are 3 or more particles in the final state, then Ej and θj are independent of each
other. One can confirm this by working out the kinematics. In that case, one can form the
differential cross sections dσ

dEj
, dσ
dθj

and d2σ
dEjθj

.

4.1.2 2 - body final state

This situation is more complicated. In the cm frame, Ej and θj are independent, but still one
cannot form dσ

dEj
, because in the cm frame, Ej is fixed by the initial energy and the masses; see

eqs. 235 and 236. However, θj is undetermined and so one can form dσ
dθj

in the cm frame. In

the lab frame, Ej and θj are functions of each other and so dσ
dEj

and dσ
dθj

are equivalent to each
other. The proof of these statements is the main topic of this section.
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4.1.3 Elastic and inelastic scattering

Elastic scattering is defined as that in which kinetic energy and mass are conserved [Griffiths
92]. For the reaction with a 2 - body final state, as in equation (218), this will mean that

T1 + T2 = T3 + T4 , (220)
m1 +m2 = m3 +m4 . (221)

If particles 3 and 4 are different from particles 1 and 2, then it will be very unlikely to find
particles with just the right masses so that m3 + m4 = m1 + m2. Thus, elastic scattering will
almost always mean that ([19] ( p. 31), and [20] (p. 403)

m1 = m3, m2 = m4, |pic| = |pfc| = |p| (222)

Thus, for all intents and purposes, we have the following statement.

Elastic scattering occurs when the particle identites do not change.

Examples are

N +N → N +N ,

and

π +N → π +N .

An example of an inelastic reaction is

N +N → N + ∆ .

This can be described with a similar formalism, simply by allowing particle masses to change
[7] (p. 100).

4.2 Mandelstam variables

For the reaction

1 + 2→ 3 + 4 ,

the Mandelstam variables are defined as

s ≡ (p1 + p2)2 = (p3 + p4)2 , (223)
t ≡ (p1 − p3)2 = (p2 − p4)2 , (224)
u ≡ (p1 − p4)2 = (p2 − p3)2 . (225)
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Note that these are Lorentz invariant. An important result for the Mandelstam variables is that
the sum of the variables is the sum of the masses squared,

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 . (226)

4.2.1 Use of the s variable

In the cm frame,
√
s is the total energy, and

√
s = E1c + E2c . (227)

The magnitude of the cm momenta can be written as

|pic| ≡ |p1c| = |p2c| , (228)
|pfc| ≡ |p3c| = |p4c| . (229)

Defining

λjk ≡ λ(s,m2
j ,m

2
k) = (s−m2

j −m2
k)

2 − 4m2
jm

2
k , (230)

one can then prove the following important results.

|pic| =

√
λ12

4s
, (231)

|pfc| =

√
λ34

4s
, (232)

E1c =
s+m2

1 −m2
2√

4s
, (233)

E2c =
s+m2

2 −m2
1√

4s
, (234)

E3c =
s+m2

3 −m2
4√

4s
, (235)

E4c =
s+m2

4 −m2
3√

4s
. (236)

Note that the energies and momenta of the final state particles, 3 and 4, in the cm frame are
fixed. That is, they depend only on the masses and incident energy

√
s. They do not depend on
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any angles. This means that one cannot form the spectral distribution dσ
dEj

in the cm frame. (j
is the label for particles 3 or 4.) Conversely, therefore, the scattering angles θ13 and θ24 cannot
depend on the momenta or energies of the final state particles.

4.2.2 Use of the t variable

Conservation of 4-momentum is

p1 + p2 = p3 + p4 , (237)

and so the t variable can be defined and expanded as

t ≡ (p1 − p3)2 = (p2 − p4)2

= m2
1 +m2

3 − 2E1E3 + 2|p1||p3| cos θ13

= m2
2 +m2

4 − 2E2E4 + 2|p2||p4| cos θ24 . (238)

Therefore, a t distribution, dσ
dt is equivalent to an angular distribution, dσ

dθ . Because the angles
θ13 and θ24 appear directly in t, it is useful in obtaining the relationship between Ej and θj as
mentioned above. This is discussed below.

4.2.3 Equal mass particles

Now, consider the case when all the particle masses are equal, i.e. m1 = m2 = m3 = m4 ≡ m.
One can show that |pic| = |pfc|. Label

k ≡ |pic| = |pfc| , (239)

and let the cm scattering angle between particles 1 and 3 be

θ13c ≡ θ . (240)

The following results can be shown ([2] (p. 102).

s = 4(k2 +m2) , (241)
t = −2k2(1− cos θ) = −4k2 sin2(θ/2) , (242)
u = −2k2(1 + cos θ) = −4k2 cos2(θ/2) . (243)

4.3 Relations between Ej and θj

4.3.1 Center of momentum frame

In the cm frame, we have

p1 + p2 ≡ 0 , and p3 + p4 ≡ 0 , (244)
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showing that the relative angle θ34 between the final state particles 3 and 4 is θ34 = 180◦. Thus,
from figure 4, we see that

θ13c = θ24c ≡ θ . (245)

Also,

|p1| = |p2| ≡ |pi| and |p3| = |p4| ≡ |pf | . (246)

We can use the t variable to show that

E3c =
s+m2

3 −m2
4√

4s
. (247)

This can be proved as follows. Use of equation (238) gives

t ≡ (p1 − p3)2 = (p2 − p4)2

= m2
1 +m2

3 − 2E1E3 + 2|pi||pf | cos θ
= m2

2 +m2
4 − 2E2E4 + 2|pi||pf | cos θ , (248)

and the cos θ term cancels out on both sides, so that

m2
1 +m2

3 − 2E1E3 = m2
2 +m2

4 − 2E2E4 . (249)

Using the results

E1 + E2 =
√

4s , (250)

and

s+m2
3 −m2

4 = m2
1 +m2

3 −m2
2 −m2

4 + 2E2(E1 + E2) , (251)

which gives equation (247). Thus, we have used the t variable to evaluate the relation between
Ej and θj in the cm frame. We have found that the relation is trivial, in that E3 does not
depend on θ13. We use this same technique below to find the (non-trivial) relation between Ej
and θj in the lab frame.

4.3.2 Lab frame

Conservation of 4-momentum gives

p1 + p2 = p3 + p4 , (252)
t = (p1 − p3)2 = (p2 − p4)2 , (253)

t = m2
1 +m2

3 − 2E1E3 + 2|p1||p3| cos θ13 = m2
2 +m2

4 − 2m2E4l , (254)
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or

t = m2
1 +m2

3 − 2E1E3 + 2
√
E2

1 −m2
1

√
E2

3 −m2
3 cos θ13 . (255)

Eliminating E4l, using conservation of energy, E4l = E1 + m2 − E3 in the lab frame gives
equation(254) as [10] (p. 102)

E3l(E1l +m2)− |p1l||p3l| cos θ13l = E1lm2 +
1
2

(m2
1 +m2

2 +m2
3 −m2

4)

=
1
2

(s+m2
3 −m2

4) , (lab frame), (256)

with |p1l| ≡
√
E2

1l −m2
1 and |p3l| ≡

√
E2

3l −m2
3. We have also used s = m2

1 +m2
2 +2m2E1l. This

is in agreement with references [10] (equation 4.65) and [7] (p. 127). Recall that when we did
this analysis for the cm case, the cos θ term canceled out on both sides. However, here for the lab
case, no such cancelation occurs so that cos θ remains, and this will give rise to the non-trivial
relation between Ej and θj . We now solve this important quadratic equation. Defining

a ≡ 1
2

(m2
1 +m2

2 +m2
3 −m2

4 + 2m2E1l) =
1
2

(s+m2
3 −m2

4) , (257)

b ≡ E1l +m2 , (258)

c ≡ |p1l| cos θ13l =
√
E2

1l −m2
1 cos θ13l , (259)

enables equation (256) to be re-written as

bE3l − c|p3l| = a , (260)

which is written either in terms of E3l as

bE3l − c
√
E2

3l −m2
3 = a , (261)

or in terms of |p3l| as

b
√
|p3l|2 +m2

3 − c|p3l| = a . (262)

Firstly, we solve equation (261). Squaring gives

(b2 − c2)E2
3l − 2abE3l + (a2 + c2m2

3) = 0 , (263)

which has the solution

E3l =
ab± c

√
a2 −m2

3(b2 − c2)

b2 − c2
, (264)
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or

E3l =
ab± |p1l| cos θ13l

√
a2 −m2

3 (b2 − p2
1l cos2 θ13l)

b2 − p2
1l cos2 θ13l

, (265)

with |p1l| ≡
√
E2

1l −m2
1. This equation agrees with Byckling [14] (equation 74) and Jackson [20]

(equation 12.53). E3l has maximum and minimum values. Based on energy conservation alone,
upper and lower bounds are given by

Elower
3l = m3 , (266)

and from energy conservation

E3 = E1 + E2 − E4 , (267)
E3l = E1l +m2 − E4l , (268)

which implies that

Eupper
3l = E1l +m2 − E4l = E1l +m2 −m4 . (269)

Note that if m2 = m4, then Emax
3l = E1l, which makes sense. The actual maximum and minimum

values of energy are determined by conservation of both energy and momentum, and are found
be setting θ13l = 0 in equation 265. Equations (256 - 265) express the fundamental relation
connecting E3l to θ13l. Given the fact that such a relation exists clearly shows that the angle is
determined by the energy and vice versa. Thus, one cannot form dσ

dT and dσ
dΩ independently. dσ

dT

and dσ
dΩ are equivalent to each other. Note, however, that we were unable to form dσ

dT in the cm
frame because the final momenta are constant and are not related to the angle. Secondly, we
solve equation (262). Squaring gives

(c2 − b2)|p3l|2 + 2ac|p3l|+ (a2 − b2m2
3) = 0 , (270)

which has the solution

|p3l| =
−ac± b

√
a2 +m2

3(c2 − b2)

c2 − b2
, (271)

or [21] (p. 52)

|p3l| =
−a|p1l| cos θ13l ± b

√
a2 +m2

3 [ |p1l|2 cos2 θ13l − (E1l +m2)2 ]

|p1l|2 cos2 θ13l − (E1l +m2)2
. (272)
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Physical solutions are found more readily using the |p3l| solutions in (272) rather than the E3l

solutions in (265). The reason is as follows. The quantity

α3c ≡
βcl
β3c

, (273)

is the speed of the cm frame with respect to the lab divided by the speed of particle 3 in the
cm frame. As pointed out by Jackson [20] (p. 403), two roots are allowed in equation (265) for
α3c > 1 but only one root for α3c < 1. Also, a physical constraint is that the solutions must
obey E3l > m3. However, for certain cases one obtains both roots no matter what the value
of α3c, even though in both cases E3l > m3. Clearly, E3l > m3 is not enough to constrain the
physical solutions [10]. The physical constraint on the magnitude of momentum is |p3l| > 0.
In the cases cited above, when one obtains two E3l roots for α3c < 1, one finds that equation
(272) gives one of the two |p3l| solutions as negative. (Of course one obtains the E3l solutions
from |p3l| by substituting into E3l =

√
|p3l|2 +m2

3, using both the positive and negative values
of |p3l|.) The negative solution is clearly unphysical and therefore one only has one physical
solution when α3c < 1. In other words, the use of the |p3l| solutions in (272) rather than the
E3l solutions in (265) enables us to immediately eliminate the unphysical solutions and we then
see that two roots are allowed for α3c > 1 but only one root for α3c < 1.

An example of an unphysical case discussed above occurs with the input parameters m1 =
m3 = 1,m2 = m4 = 2, E1l = 2m1, θ13l = π/7, resulting in α3c = .625, E+

3l = 1.86344, E−3l =
1.08538, |p+

3l| = 1.57238, |p−3l| = −0.42196. As a final point, note that equation (270) can be
written as

A|p3l|2 − 2B|p3l| − C = 0 , (274)

which has the solution

|p3l| =
B ±

√
B2 +AC

A
≡ B ±D

A
, (275)

where

D ≡
√
B2 +AC , (276)

E ≡ E1l +m2 , (277)

K ≡ 1
2

(m2
1 +m2

2 +m2
3 −m2

4 + 2m2E1l) =
1
2

(s+m2
3 −m2

4) , (278)

A ≡ E2 − |p1l|2 cos2 θ13l = s+ |p1l|2 sin2 θ13l , (279)
B ≡ K|p1l| cos θ13l , (280)
C ≡ K2 −m2

3E
2 . (281)

C can be re-written as

4C = (s+m2
3 −m2

4)2 − 4m2
3(E1l +m2)2
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= (s+m2
3 −m2

4)2 − m2
3

m2
2

(s+m2
2 −m2

1)2 , (282)

or

4Cm2
2 = m2

2(s+m2
3 −m2

4)2 −m2
3(s+m2

2 −m2
1)2 . (283)

Now, it turns out that

α3c > 1 iff C < 0 , => 2 solutions, (284)
α3c ≤ 1 iff C > 0 , => 1 solution. (285)

Here, the mathematical symbol iff means “if and only if”. α3c is given in equation (445) as

α3c ≡
βc
β3c

=
s+m2

3 −m2
4

s−m2
1 +m2

2

√
λ12

λ34
. (286)

Note that C(s) = 0 has the solutions

s1 =
m2(m2

4 −m2
3) +m3(m2

1 −m2
2)

m2 +m3
, (287)

s2 =
m2(m2

4 −m2
3)−m3(m2

1 −m2
2)

m2 −m3
, (288)

and α3c(s) = 1 has the same solutions, showing that C = 0 iff α3c = 1, which is consistent
with (285). One can now vary s and study the behavior of C and α3c. One can check (285)
numerically by doing a parametric plot of C(s) and α3c(s), letting s vary.

4.3.3 Proof of equation (285)

First, note the following.

A > 0 always, (289)
B2 > 0 always, (290)
K > 0 always. (291)

Equation (291) can be seen by noting that the minimum value of K = 1
2(s + m2

3 −m2
4) occurs

at the minimum value of s, which is at threshold where sthreshold = (m3 + m4)2. (Note that
s is Lorentz invariant so that this relation is true in any frame.) Thus, the minimum value
of K is Kthreshold = 1

2 [(m3 + m4)2 + m2
3 − m2

4] = m3(m3 + m4), which is always > 0. Given
D ≡

√
B2 +AC, it follows that (with |B| =

√
B2)

D > |B| iff C > 0, (292)
D < |B| iff C < 0. (293)
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Secondly, note that we need to consider forward and backward scattering separately because of
the following.

Forward scattering:

−π
2
< θ13l <

π

2
=> cos θ13l > 0 => B > 0.

Backward scattering:

θ13l < −
π

2
or θ13l >

π

2
=> cos θ13l < 0 => B < 0.

Now, write the solutions as

|p+
3l| =

B +D

A
, (294)

|p−3l| =
B −D
A

, (295)

and note that

D > 0 always.

i) First, consider the case of forward scattering, i.e. B > 0.

B > 0, A > 0 always, D > 0 always, => |p+
3l| > 0,

and, with B > 0, A > 0 always, equations (292) and (293) imply that

|p−3l| > 0 (allowed physically) if |B| > D => C < 0,
|p−3l| < 0 (not allowed physically) if D > |B| => C > 0.

Thus,

if C < 0 => both roots |p±3l| are allowed,
if C > 0 => only one root |p+

3l| is allowed.

ii) Now, consider the case of backward scattering, i.e. B < 0.

B < 0, A > 0 always, D > 0 always, => |p−3l| < 0

and, with B < 0, A > 0 always, equations (292) and (293) imply that

|p+
3l| > 0 (allowed physically) if D > |B| => C > 0,

|p+
3l| < 0 (not allowed physically) if D < |B| => C < 0.
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Thus,

If C < 0 => both roots |p±3l| are not allowed.
If C > 0 => only one root |p+

3l| is allowed.

iii) Now, combine the results for both forward and backward scattering and summarize as follows.

If C < 0 => both roots |p±3l| are either both allowed(forward scattering),
or both not allowed (backward scattering).

If C > 0 => only one root |p+
3l| is allowed,

(for both forward and backward scattering).

4.4 Further results

4.4.1 Momenta in the cm frame

We wish to prove that |pfc| =
√

λ34
4s and |pic| =

√
λ12
4s . Note that using

Fany frame =
1
2

√
λ12 , (296)

these equations imply that

Fc =
√
s |p1c| = (E1 + E2)|p1c| . (297)

We proceed with the proofs as follows. Eliminate p4 in terms of the incident energy. Write
the Mandelstam variable

s ≡ (p1 + p2)2 = (p3 + p4)2

= (E1 + E2)2 − (p1 + p2)2 = (E3 + E4)2 − (p3 + p4)2 . (298)

In the cm frame, p1 + p2 = 0 = p3 + p4 and |p1| = |p2| ≡ |pic| and |p3| = |p4| ≡ |pfc|. Thus,

s = (E1 + E2)2 = (E3 + E4)2 = E2
3 + E2

4 + 2E3E4

= p2
fc +m2

3 + p2
fc +m2

4 + 2
√

(p2
fc +m2

3)(p2
fc +m2

4) , (299)

and

s−m2
3 −m2

4 − 2p2
fc = 2

√
(p2

fc +m2
3)(p2

fc +m2
4) . (300)

Squaring both sides gives

(s−m2
3 −m2

4)2 − 4p2
fc(s−m2

3 −m2
4) + 4p4

fc

= 4[p4
fc + p2

fc(m
2
3 +m2

4) +m2
3m

2
4] , (301)
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and

4p2
fcs = (s−m2

3 −m2
4)2 − 4m2

3m
2
4

= λ(s,m2
3,m

2
4) = λ34 , (302)

which gives [10] (p. 100)

|pfc| =

√
λ34

4s
. (303)

Similarly,

|pic| =

√
λ12

4s
. (304)

4.4.2 Energies in the cm frame

Energies E1c, E3c and E4c may be expressed in terms of the Mandelstam invariant s,

s = (p1 + p2)2 = (E1 + E2)2 − (p1 + p2)2 . (305)

In the cm frame (with |p1| = |p2| ≡ |p|),
√
s = E1 + E2 with E2

1 = p2 +m2
1 and E2

2 = p2 +m2
2 . (306)

Thus,

E2
2 = E2

1 −m2
1 +m2

2 , (307)

giving
√
s− E1 = E2

=
√
E2

1 −m2
1 +m2

2 (308)

(
√
s− E1)2 = E2

1 −m2
1 +m2

2

= s−
√

4sE1 + E2
1 . (309)

Thus,

s−
√

4sE1 = −m2
1 +m2

2 , (310)

giving

E1c =
s+m2

1 −m2
2√

4s
. (311)
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The result for E3c and E4c are derived similarly [12] (p. 15). One can now calculate

|p1c| =
√
E2

1c −m2
1 , (312)

and the result agrees with the previously derived equation,

|pic| =

√
λ12

4s
. (313)

4.4.3 Bounds on Mandelstam variable t

We wish to obtain formulas for t0 and tπ. Specifically, we will prove that

t0(tπ) = (E1c − E3c)2 − (|p1c| ∓ |p3c|)2

=

[
m2

1 −m2
2 −m2

3 +m2
4√

4s

]2

− (|p1c| ∓ |p3c|)2

=
1
4s

[(m2
1 −m2

2 −m2
3 +m2

4)2 − (
√
λ12 ∓

√
λ34)2] . (314)

The notation ∓ means that the equation for t0 has the − sign and the equation for tπ has the
+ sign. We proceed with the proof as follows. The Mandelstam variable is

t = (p1 − p3)2

= (E1 − E3)2 − (p1 − p3)2 , (315)

and we use

(p1 − p3)2 = |p1|2 + |p3|2 − 2p1.p3

= |p1|2 + |p3|2 − 2|p1||p3| cos θ

= |p1|2 + |p3|2 − 2|p1||p3|(1− 2 sin2 θ

2
)

= |p1|2 + |p3|2 − 2|p1||p3|+ 4|p1||p3| sin2 θ

2

= (|p1| − |p3|)2 + 4|p1||p3| sin2 θ

2
. (316)

With the definitions, t0 ≡ t(θc = 0) and tπ ≡ t(θc = π), we get

t0(tπ) = (E1c − E3c)2 − (|p1c| ∓ |p3c|)2 (317)

as desired. For the proof of the second equation above, use the previously derived results,

E1c =
s+m2

1 −m2
2√

4s
and E3c =

s + m2
3 −m2

4√
4s

, (318)
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to give

(E1c − E3c)2 =
m2

1 −m2
2 −m2

3 +m2
4√

4s
, (319)

which results in

t = (E1c − E3c)2 − (p1c − p3c)2

= (E1c − E3c)2 − (|p1| − |p3|)2 − 4|p1||p3| sin2 θc
2
. (320)

With the definitions t0 ≡ t(θc = 0) and tπ ≡ t(θc = π), we obtain equation (314) as desired.

4.4.4 Momentum and energy thresholds

We now obtain lab energy and momentum thresholds. Consider the 2 - body reaction

1 + 2→ 3 + 4 . (321)

We wish to prove the following results.

(a) If the lab momentum of particle 1 is p1l, we will derive expressions for s ≡ (p1 + p2)2 ≡
(p3 + p4)2 in terms of E1l, T1l and p1l.

(b) We will obtain the threshold value of s needed to produce the final state particles.

(c) We will obtain the threshold value of T1l needed to produce the final state particles.

We now proceed with the proofs as follows.

(a) Start with

s ≡ (p1 + p2)2v

= (E1 + E2)2 − (p1 + p2)2 . (322)

In the lab frame, p2 ≡ 0 and therefore E2l = m2. Thus, in the lab frame

s = (E1l +m2)2 − p2
1

= E2
1l + 2m2E1l +m2

2 − p2
1

= m2
1 +m2

2 + 2m2E1l = m2
1 +m2

2 + 2m2

√
p2

1l +m2
1

= (m1 +m2)2 + 2m2T1l . (323)

(b) s is invariant. In the cm frame, s = (E1 +E2)2 = (E3 +E4)2 and so the threshold value is

sthreshold = (m3 +m4)2 (324)

when the final state particles are all produced at rest.
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(c) Substituting into the equation above, we get

T1l threshold =
(m3 +m4)2 − (m1 +m2)2

2m2
. (325)

4.4.5 Relative scattering angle in the cm frame

Now consider the relative angle between the two final state particles. Consider the reaction
1 + 2→ 3 + 4. We can obtain some more useful results.

(a) We show that in the center of momentum frame, the particles 3 and 4 scatter at a relative
angle of θ34c = 180◦. We show this is true in both the non-relativistic and relativistic
cases.

(a) Now, consider the lab frame. We will show that

p2
1 = p2

3 + p2
4 + 2|p3||p4| cos θ34l . (326)

where θ34l is the relative scattering angle between particles 3 and 4 in lab frame, and p
refers to the particle 3-momenta. We show this equation is true in both the non-relativistic
and relativistic cases.

(c) Now, consider part b) for the case of elastic scattering, where all particle masses are equal.
In the non-relativistic case, we will show that the lab angle is θ34l = 90◦. (Note: In the
non-relativistic case, elastic scattering is defined as conservation of kinetic energy.)

(d) Again, consider part b) for the case of elastic scattering, where all particle masses are
equal. This time consider the relativistic case. Now, the scattering angle between the final
particles is not 90◦, but is instead given by

cos θ34l =
T3T4

|p3||p4|
=

T3(T1 − T3)√
T 2

3 + 2mT3

√
(T1 − T3)2 + 2m(T1 − T3)

, (327)

where T3 and T4 are the kinetic energies of particles 3 and 4 and |p3| and |p4| are the
magnitudes of their 3-momenta. We prove this result for the relativistic case. Also, we
show how this reduces to the non-relativistic result θ34l = 90◦ for small speeds. (Note:
In the relativistic case, elastic scattering is defined as conservation of kinetic energy and
mass. Small speed is equivalent to mass being much bigger than kinetic energy.)

We now prove these results as follows.

(a) The cm frame, in both the non-relativistic and relativistic cases, is defined by

p3 + p4 = 0 , (328)

giving

p3 = −p4 , (329)
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implying that the relative angle in the center of momentum frame is

θ34c = 180◦ . (330)

Alternative method:

p3 = −p4 . (331)

Define

p2
3 = p2

4 ≡ p2
f . (332)

Thus,

(p3 + p4)2 = 0 = p2
3 + p2

4 + 2|p3||p4| cos θ34c

= 2p2
f + 2p2

f cos θ34c . (333)

Therefore,

2p2
f = −2p2

f cos θ34c (334)
cos θ34c = −1 (335)

θ34c = 180◦ , in the cm frame . (336)

This is true in both the non-relativistic and relativistic cases. No assumptions have been
made concerning mass or whether or not the scattering is elastic.

(b) The lab frame in both the non-relativistic and relativistic cases is defined by

p2 = 0 . (337)

Conservation of 3-momentum becomes

p1 + p2 = p3 + p4 (338)
p1 = p3 + p4 , lab frame . (339)

=> p2
1 = p2

3 + p2
4 + 2|p3||p4| cos θ34l . (340)

(c) In the non-relativistic case, elastic scattering is defined by conservation of kinetic energy,

T1 = T3 + T4 , lab frame. (341)
p2

1

2m
=

p2
3

2m
+

p2
4

2m
(342)

=> p2
1 = p2

3 + p2
4 . (343)

Substituting into equation (340) gives cos θ34l = 0 or θ34l = 90◦.
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(d) In the relativistic case, total energy is always conserved,

E1 + E2 = E3 + E4 , (344)
T1 +m1 + T2 +m2 = T3 +m3 + T4 +m4 . (345)

In relativistic elastic collisions, kinetic energy, rest energy and mass are all conserved.
Thus, for relativistic elastic collisions

T1 + T2 = T3 + T4 , (346)
m1 +m2 = m3 +m4 . (347)

The second equation is of course true by our assumption of equal mass particles. In the
lab frame,

T1 = T3 + T4 lab frame (348)

which is the same as the non-relativistic case. However, now the expressions for kinetic
energy are different, namely√

p2
1 +m−m =

√
p2

3 +m−m+
√

p2
4 +m−m , lab frame , (349)√

p2
1 +m+m =

√
p2

3 +m+
√

p2
4 +m

= E1 +m = E3 + E4 , (350)

where we could have obtained this equation right away by setting E2 = m in equation
(344). This all illustrates how the conservation of energy and kinetic energy work out in
the relativistic case, and we have written this out for comparison to the non-relativstic
results. However, to actually get a result in terms of the angle θ34l, it is easier to work
with 4-vectors. Thus,

(p1 + p2)2 = (p3 + p4)2 , (351)
m2

1 +m2
2 + 2(E1E2 − p1 · p2) = m2

3 +m2
4 + 2(E3E4 − p3 · p4) . (352)

Let m1 = m2 = m3 = m4 ≡ m. This implies elastic scattering, because mass is conserved
and as shown above, it implies conservation of kinetic energy. This gives

E1E2 − p1 · p2 = E3E4 − p3 · p4 . (353)

The lab frame is defined with p2 = 0, giving

mE1 = E3E4 − |p3||p4| cos θ34l (354)

cos θ34l =
E3E4 −mE1

|p3||p4|
. (355)

Conservation of energy gives E1+E2 = E3+E4 which, in the lab frame, is E1+m = E3+E4,
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or E1 = E3 + E4 −m. Substitution gives

cos θ34l =
T3T4

|p3||p4|
. (356)

This is not the final answer, however, because T1 = T3 + T4 giving T4 = T1 − T3. Using

p2 = E2 −m2 = (T +m)2 −m2 = T 2 + 2mT , (357)

gives

p2
3 = T 2

3 + 2mT3 , (358)

and

p2
4 = T 2

4 + 2mT4 = (T1 − T3)2 + 2m(T1 − T3) . (359)

Thus,

cos θ34l =
T3T4

|p3||p4|
=

T3(T1 − T3)√
T 2

3 + 2mT3

√
(T1 − T3)2 + 2m(T1 − T3)

. (360)

In the non-relativistic limit, energy is dominated by rest mass energy. In other words,

m >> T . (361)

Thus,

cos θ34l ≈
T3(T1 − T3)√

2mT3

√
(2m(T1 − T3)

=
√
T3(T1 − T3)

2m
≈ 0 , for m >> T , (362)

giving

θ34l ≈ 90◦ (363)

in the non-relativistic limit.

4.4.6 Equivalence of |pic| and |pfc|

Consider the reaction

1 + 2→ 3 + 4.
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Consider the case when all the particle masses are equal, i.e. m1 = m2 = m3 = m4 ≡ m. One
can show that |pic| = |pfc|. (See the previous results). Label

k ≡ |pic| = |pf | , (364)

and let the cm scattering angle between particles 1 and 3 be

θ13c ≡ θ . (365)

We will show the following results.

(a) s = 4(k2 +m2) , (366)
(b) t = −2k2(1− cos θ) = −4k2 sin2(θ/2) , (367)
(c) u = −2k2(1 + cos θ) = −4k2 cos2(θ/2) . (368)

To show these results, we proceed as follows.

(a) Begin with

s = (p1 + p2)2

= p2
1 + p2

2 + 2p1.p2

= m2
1 +m2

2 + 2(E1E2 − p1.p2) . (369)

In the cm frame, p1 + p2 = 0 giving p1.p2 = −|p1|2 ≡ −p2
ic = −k2. Thus

s = m2
1 +m2

2 + 2[
√

(k2 +m2
1)(k2 +m2

2) + k2]

= 2m2 + 2(k2 +m2 + k2) with m1 = m2 ≡ m
= 4(k2 +m2) . (370)

(b) The Mandelstam variable is

t = (p1 − p3)2

= p2
1 + p2

3 − 2p1.p3

= m2
1 +m2

3 − 2(E1E2 − p1.p3)

= m2
1 +m2

3 − 2
√

(p2
1 +m2

1)(p2
3 +m2

3) + 2|p1||p3| cos θ13 . (371)

In the cm frame, when m1 = m2 = m3 = m4 ≡ m, we have |p1c| = |p3c| ≡ k, which gives

t = 2m2 − 2(k2 +m2) + 2k2 cos θ
= −2k2(1− cos θ) = −4k2 sin2(θ/2) . (372)
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(c) Changing 3→ 4 in the above gives

u = (p1 − p4)2

= −2k2(1− cos θ14)
= −2k2[1− cos(180− θ13)]
= −2k2(1 + cos θ13)
= −2k2(1 + cos θ) = −4k2 cos2(θ/2) where θ ≡ θ13 . (373)

The relation θ14 = 180− θ13 can be seen in figure 6.

1 2

3

4

θ13

θ14

Figure 6: The reaction, 1 + 2→ 3 + 4, viewed in the cm frame.

4.4.7 Relationship of s and p1l

For the reaction,

1 + 2→ anything ,

we now show that

s = m2
1 +m2

2 + 2m2E1l

= m2
1 +m2

2 + 2m2

√
p2

1l +m2
1 , (374)

where p1l is the momentum of particle 1 in the lab frame. This is proved as follows. The
Mandelstam variables is

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1.p2

= m2
1 +m2

2 + 2(E1E2 − p1.p2) . (375)
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The lab (or target) frame is defined as the frame in which the target is at rest, namely p2l = 0.
Thus, equation (374) is obtained.

4.4.8 Threshold of s

For the reaction,

1 + 2→ 3 + 4 + 5 ,

we now derive an expression for the threshold value of s in terms of m3,m4,m5 only. We
proceed as follows. Our formula for the threshold kinetic energy was given in equation (325)
and generalizes to 3 final state particles as

T1l =
(m3 +m4 +m5)2 − (m1 +m2)2

2m2
. (376)

In the previous result, we showed that

s = m2
1 +m2

2 + 2m2E1l = m2
1 +m2

2 + 2m2(T1l +m1)
= (m1 +m2)2 + 2m2T1l = (m1 +m2)2 + (m3 +m4 +m5)2 − (m1 +m2)2

= (m3 +m4 +m5)2 . (377)

An alternative derivation is

s = (p1 + p2)2

= (p3 + p4 + p5)2 , (due to 4−momentum conservation)
= (m3 +m4 +m5)2 , (378)

because all final state particles are produced at rest in the cm frame at threshold.

5 Lorentz transformations

Cross sections are usually calculated in the center of momentum or projectile frames, but space
radiation transport codes require cross section formulas in the lab (spacecraft) frame. One
therefore must transform cross sections, angle, energies and momenta into the lab frame, by
using Lorentz transformations. The general formulas for doing this are derived in this section.

Suppose a frame S′ is moving at velocity v relative to a stationary frame S, as shown in
figure 7. We will always choose the longitudinal z direction to be in the direction of motion.
The transverse directions x and y will always be perpendicular to the velocity. The Lorentz
tranformations for transforming spacetime coordinates from one frame to another as shown in
figure 7 are (

t′

z′

)
=

(
γ −γβ
−γβ γ

)(
t
z

)
, (379)
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and

x′ = x y′ = y , (380)

where

β ≡ v . (381)

v

vt

S/

S

Figure 7: Reference frame S′ moves at speed v relative to S.

Frame S moves relative to S′ at speed −v, as shown in figure 8. The inverse transformation is(
t
z

)
=

(
γ γβ
γβ γ

)(
t′

z′

)
. (382)

Thus, the inverse transformations are obtained by swapping primes and unprimes and changing
the sign of v.

5.1 Lorentz transformations of energy and momentum

Consider a frame S′ moving at speed v relative to frame S. Now, imagine that a particle is
moving at velocity u in frame S′. (See figure 2-4 from Tipler [22].) If the particle has energy
and momentum E′ and p′ as measured in frame S′, the Lorentz transformation gives the energy
and momentum E and p measured in frame S.

The coordinates t and x form a 4-vector (t,x) with an invariant squared length given by
s2 = t2−x2. Similarly, for the energy-momentum 4-vector (E,p), the invariant squared ”length”
is E2 − p2 = m2. The E and p obey Lorentz transformations identical to t and x:(

E′

p′z

)
=

(
γ −γβ
−γβ γ

)(
E
pz

)
, (383)

p′x = px , p′y = py . (384)
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v
S

S/

Figure 8: Frame S viewed from S′.

It is often very useful to write this in terms of parallel momenta p|| ≡ pz and transverse momenta
pTx ≡ px or pTy ≡ py. We often just write pT to denote either pTx or pTy. The direction parallel
or transverse is defined in relation to the velocity of the frame S′. Thus, we write(

E′

p′||

)
=

(
γ −γβ
−γβ γ

)(
E
p||

)
, p′T = pT . (385)

5.2 Transformation between cm or projectile frame and lab (target) frame

Suppose we have quantities in the cm or projectile frames and we wish to transform to the
lab frame. The cm frame moves at speed βcl relative to the lab frame. The corresponding γ
factor is labelled as γcl. The projectile frame moves at speed βpl relative to the lab frame. The
corresponding γ factor is labelled as γpl. The Lorentz transformations are(

E∗
p||∗

)
=

(
γ∗l −γ∗lβ∗l
−γ∗lβ∗l γ∗l

)(
El
p||l

)
, pT∗ = pT l , (386)

and inverse transformations are(
El
p||l

)
=

(
γ∗l γ∗lβ∗l
γ∗lβ∗l γ∗l

)(
E∗
p||∗

)
, pT l = pT∗ , (387)

where

p|| ≡ pz = |p| cos θ , (388)
pT = |p| sin θ . (389)

With the above notation, both cm and projectile frames are included. The notation is as follows.
A quantity x∗ is the value of the quantity x evaluated in that particluar frame with

∗ = c or ∗ = p , (390)
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and β∗l is the speed of that frame with respect to the lab with

β∗l = βcl or β∗l = βpl . (391)

5.2.1 Evaluation of βcl and γcl

Consider the non-relativistic case. For 2 particles, the position of the center of mass frame,
relative to an arbitrary origin, is defined via

R ≡ m1r1 +m2r2

m1 +m2
, (392)

giving the velocity of the cm frame as

V ≡ m1v1 +m1v2

m1 +m2
=

p1 + p2

m1 +m2
. (393)

The velocity of the cm frame relative to the lab frame is obtained by setting p2 = 0 to give

Vcl =
p1l

m1 +m2
, (394)

where p1l is the momentum of particle 1 (the projectile) in the lab frame. The relativistic case
follows similarly. For a single particle of mass m, p = γmv and E = γm giving

β ≡ v =
p
E
, (395)

γ =
E

m
, (396)

γv =
p
m
. (397)

For a system of particles (Byckling [14] (p. 21) of total energy E = E1 + E2 + · · · and total
momentum p = p1 + p2 + · · ·, the invariant mass is

M ≡
√
E2 − p2 =

√
s , (398)

which, for 2 particles, is [1]

M ≡
√

(E1 + E2)2 − (p1 + p2)2 =
√
s . (399)

The velocity of the cm frame is

β ≡ v =
p
E

=
p1 + p2 + · · ·
E1 + E2 + · · ·

, (400)

γ =
E

M
=
E1 + E2 + · · ·√

s
, (401)

γβ =
p
M

=
p1 + p2 + · · ·√

s
. (402)
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For a system of 2 particles, the velocity of the cm frame relative to the lab frame is obtained by
setting p2 = 0, to give [1]

βcl =
p1l

E1l +m2
, (403)

γcl =
E1l +m2√

s
, (404)

γclβcl =
p1l√
s
, (405)

with
√
s =

√
m2

1 +m2
2 + 2m2E1l , (406)

where p1l is the momentum of particle 1 (the projectile) in the lab frame. These results can
also be written in terms of invariants. It is straightforward to show that√

λlab12 = 2m2 |p1l| , (407)

and because λ is invariant, it does not need a frame label, i.e.

|p1l| =
√
λ12

2m2
. (408)

Substituting into the above expressions gives ([14] pps. 26 and 73)

βcl =
√
λ12

s−m2
1 +m2

2

, (409)

γcl =
s−m2

1 +m2
2

2m2
√
s

, (410)

γclβcl =
1
m2

√
λ12

4s
. (411)

5.2.2 Evaluation of βpl and γpl

Clearly,

βpl =
p1l

E1l
, (412)

γpl =
E1l

m1
= 1 +

T1l

m1
, (413)

γplβpl =
p1l

m1
, (414)
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where T is the kinetic energy. Again, these results can also be written in terms of invariants. It
is straightforward to show that

βpl =
√
λ12

s−m2
1 −m2

2

, (415)

γpl =
s−m2

1 −m2
2

2m1m2
, (416)

γplβpl =
√
λ12

2m1m2
. (417)

5.3 Energy transformations

The Lorentz transformation for energy from the lab (l) frame to the starred (∗) frame is

E∗ = γ∗l(El − β∗lp||l)
= γ∗l(El − β∗l|pl| cos θl)

= γ∗l

(
El − β∗l

√
E2
l −m2 cos θl

)
. (418)

The derivative dE∗/dEl is found by expressing cosθl in (254) in terms of El, and substituting for
cosθl above to eliminate θl and have E∗ solely as a function of El. The inverse transformation is

El = γ∗l

(
E∗ + β∗l

√
E2
∗ −m2 cos θ∗

)
. (419)

5.4 Angle transformations

The angle is obtained from

tan θ =
pT
pz

. (420)

Thus, the angle of particle j is

tan θjl =
pT jl
pz jl

=
pT j∗

γ∗lβ∗lEj∗ + γ∗lpz j∗

=
|pj∗| sin θj∗

γ∗l (β∗lEj∗ + |pj∗| cos θj∗)
. (421)

Defining αj∗ as the speed of the (cm or projectile) frame relative to the lab divided by the speed
of particle j in the (cm or projectile) frame

αj∗ ≡
β∗l
βj∗

, (422)
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and using

βj∗ =
|pj∗|
Ej∗

, (423)

we obtain

tan θjl =
sin θj∗

γ∗l (cos θj∗ + αj∗)
, (424)

See references [20] (p. 402), [14] (p. 42), [12] (p. 17), [19] (p. 26). The above equation is a
complicated function of θ because in general

αj∗ = αj∗(Ej∗) = αj∗(θj∗) , (425)

To make this explicit, the equation is written

tan θjl =
sin θj∗

γ∗l [cos θj∗ + αj∗(θj∗)]
. (426)

That is, in general, αj∗ is a function of θj∗, making tan θjl a complicated function of θj∗. How-
ever, for the cm frame Ejc is not a function of θjc, meaning that αjc is not a function of θjc
[14] (pp. 42, 58). Also, for a 3 - body final state Ejc is not a function of θjc meaning that αjc is
not a function of θjc. For ∗ = c, this is plotted in references [14] (p. 43), [20] (p. 403), [23]. For
αj∗ > 1, the function is double valued. That is, two different angles in the (cm or projectile)
frame can give rise to the same angle in the lab frame for αj∗ > 1. However, the two particles
can be distinguished by their energies, labelled for the cm frame as E±jc [20] (p. 402). Later we
will need to evaluate d cos θl

d cos θ∗
. Using sec2 θ − tan2 θ = 1 allows equation (426) to be re-written as

cos θjl =
γ∗l[cos θj∗ + αj∗(θj∗)]√

γ2
∗l[cos θj∗ + αj∗(θj∗)]2 + sin2 θj∗

, (427)

which is written in terms of θj∗, to be contrasted later with (433) written in terms of θjl. In
evaluating d cos θl

d cos θ∗
, one needs to be very careful, because, as stated above, αj∗ is a function of θj∗.

That is, in general, αj∗ is a function of θj∗, making the evaluation of d cos θl
d cos θ∗

difficult. However,
for the cm frame, Ejc is not a function of θjc, meaning that αjc is not a function of θjc ([14]
pps. 42 and 58). This is also true for a 3 - body final state. Thus, for the cm frame we have
[14] (p. 59)

d cos θjl
d cos θjc

=
γ∗l(1 + αjc cos θjc)

[γ2
∗l(αjc + cos θjc)2 + sin2 θjc]3/2

, (428)

which is written in terms of θjc, to be contrasted later with [14] (p. 59) written in terms of θjl.
Using exactly the same technique that was used to derive equation (426), we may also derive
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the following [14] (p. 42)

tan θ±j∗ =
sin θjl

γ∗l[cos θjl − α±jl(θjl)]
, (429)

where

β±jl =
|p±jl|
E±jl

, (430)

α±jl ≡
β∗l

β±jl
. (431)

Again, we have been careful to note that α±jl is a function of θjl, i.e.

α±jl = α±jl(θjl) . (432)

This time the lab momentum and energy are double valued functions of the lab angle, as dis-
cussed previously. This is not the case in the cm frame. There, the energy and momentum are
independent of the angle. Now, equation (429) is a complicated function of θjl because in general
αjl = αjl(θjl). An alternative to equation (429) is to invert equation (426) directly which leads
to [14] (p. 43, equation 8.32)

cos θj∗ =
−αj∗(θj∗)γ2

∗l tan2 θjl ±
√
D

1 + γ2
∗l tan2 θjl

, (433)

which is written in terms of θjl, in contrast with equation (427) written in terms of θj∗. The
term D is given by

D = 1 + γ2
∗l tan2 θjl[1− α2

j∗(θj∗)] , (434)

and using [14] (p. 43)

1 + γ2
∗l tan2 θjl =

γ2
∗l

cos2 θjl
(1− β2

∗l cos2 θjl) , (435)

gives

cos θj∗ =
−αj∗(θj∗)γ2

∗l[1− cos2 θjl]± cos2 θjl
√
D

γ2
∗l(1− β2

∗l cos2 θjl)
. (436)

This is still a complicated function of θj∗ through αj∗ = αj∗(θj∗). However, it has a big advantage
for the cm frame because, as discussed above, αjc is not a function of θjc. The derivative is [14]
(p. 59)

d cos θjc
d cos θjl

=
cos θjl

γ2
cl(1− β2

cl cos2 θjl)2

(αjc ±
√
D)2

(±
√
D)
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=

(
|pjl|
|pjc|

)2
1

(±
√
D cos θjl)

=
±|pjl|2

γcl|pjc|(|pjl| − Ejlβcl cos θjl)
, (437)

which is written in terms of θjl, in contrast with equation (428) written in terms of θjc. Here,

|pjl| given by (272) and Ejl =
√
|pjl|2 +m2

i where

D = 1 + γ2
cl tan2 θjl(1− α2

jc) . (438)

5.4.1 Evaluation of α3c and α4c

We have already obtained βcl in equation (409) above. Now,

βjc =
|pjc|
Ejc

. (439)

Using the results from section 4.2.1,

|p3c| = |p4c| = |pfc| =

√
λ34

4s
, (440)

E3c =
s+m2

3 −m2
4√

4s
, (441)

E4c =
s+m2

4 −m2
3√

4s
, (442)

which gives

β3c =
√
λ34

s+m2
3 −m2

4

, (443)

β4c =
√
λ34

s+m2
4 −m2

3

, (444)

which results in [14] (p. 73)

α3c ≡
βcl
β3c

=
s+m2

3 −m2
4

s−m2
1 +m2

2

√
λ12

λ34
(445)

α4c ≡
βcl
β4c

=
s+m2

4 −m2
3

s−m2
1 +m2

2

√
λ12

λ34
. (446)

We see that α3c is the same as α4c except for the interchange 3 ↔ 4. This gives exactly the
same result as α in equation (12.51) of reference [20] and τ in reference [19].
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5.5 Transformation of angular distributions

Suppose we have dσ
dΩj∗

in the cm or projectile frames and we wish to obtain dσ
dΩjl

in the lab frame.
Clearly,

dσ

d cos θjl
=

dσ

d cos θj∗
d cos θj∗
d cos θjl

, (447)

and using dΩ = 2πd(cos θ) gives

dσ

dΩjl
=
d cos θj∗
d cos θjl

dσ

dΩj∗
. (448)

Using equation (428) gives

dσ

dΩjl
=

[γ2
∗l(αjc + cos θjc)2 + sin2 θjc]3/2

γ∗l|1 + αjc cos θjc|
dσ

dΩjc
, (449)

which agrees with Joachain [19] (equation 2.104). This is written in terms of θjc, in contrast to
(450) written in terms of θjl. Equation (449) is one of our most important results. It tells us
how to transform an angular distribution from the cm frame to the lab frame. The way to use it
is as follows. Suppose you want the lab frame angular distribution dσ

dΩjl
evaluated at a particular

lab angle, say θjl = 45◦. Then, evaluate the corresponding cm angle θjc by substituting θjl = 45◦

into equation (433). This cm angle is simply substituted into the right hand side of equation
(449), and the number obtained is the value of dσ

dΩjl
. Now of course, because of the double valued

nature of (433), you might get two angles, say θ+
jc and θ−jc. If this occurs, it simply means

that there are two terms on the right hand side of (449) which must be added incoherently (i.e.
ordinary simple addition with no interference terms). However, equation (449) is inconvenient
in one sense. If we want the angular distribution dσ

dΩjl
in the lab frame, then it would be very

nice to have it only as a function of the lab frame angle θjl. But equation (449) is written in
terms of the cm angle θjc. Using reference [14] (p. 59) gives

dσ

dΩjl
=

cos θjl
γ2
cl(1− β2

cl cos θ2
jl)2

(α3c ±
√
D)2

(±
√
D)

dσ

dΩjc

=

(
|pjl|
|pjc|

)2
1

(±
√
D cos θjl)

dσ

dΩjc

=
|pjl|2

γcl|pjc|(|pjl| − Ejlβcl cos θjl)
dσ

dΩjc
. (450)

This is written in terms of θjl, in contrast to equation (449) written in terms of θjc. However,
the right hand side still contains dσ

dΩjc
which is a function of θjc. To eliminate this dependance,

substitute equation (436) wherever cos θjc appears in dσ
dΩjc

. This will result in the right hand side
of equation (450) being only a function of θjl. Of course, it will be double valued sometimes.
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5.6 Double differential cross sections

In order to transform an area element such as dxdy or a volume element such as dxdydz, we
need to use the Jacobian defined as

∂(x, y)
∂(u, v)

≡

∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣ ≡ ∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
, (451)

so that under a change of coordinates, an integral becomes∫ ∫
f(x, y)dxdy =

∫ ∫
f [x(u, v), y(u, v)]

∂(x, y)
∂(u, v)

dudv , (452)

or, in other words,

dxdy =
∂(x, y)
∂(u, v)

dudv . (453)

The proof of this is usually given in advanced calculus books. If several transformations need
to be carried out, we can use the chain rule properties of the Jacobian, namely

∂(x1 · · ·xn)
∂(z1 · · · zn)

=
∂(x1 · · ·xn)
∂(y1 · · · yn)

∂(y1 · · · yn)
∂(z1 · · · zn)

. (454)

We are interested in relating the double differential cross section between the cm or projectile
frames and the lab frame, as in

d2σ

dEjldΩjl
=

d2σ

dEj∗dΩj∗

∂(Ej∗,Ωj∗)
∂(Ejl,Ωjl)

, (455)

which is the analog of equation (447). In the following analysis, it is essential that El and θl
are independent. This is true for 3 particles in the final state, but, as we saw previously, it is
not true for only 2 particles in the final state. Re-write the Lorentz transformations (387) as
(leaving off the index i)

E∗ = γ∗l(El − β∗lp||l) , (456)
p||∗ = γ∗l(p||l − β∗lEl) , (457)
PT∗ = pT l , (458)

or

E∗ = γ∗l(El − β∗l|pl| cos θl) , (459)
|p∗| cos θ∗ = γ∗l(|pl| cos θl − β∗lEl) , (460)
|p∗| sin θ∗ = |pl| sin θl . (461)
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Now our two independent variables are E and θ (or Ω). For the case of 3 or more particles in
the final state, E is no longer a function of θ. This makes calculation of the derivatives simpler
than for the case of only 2 final state particles. The above equation can be written as

E∗ = γ∗l

(
El − β∗l

√
E2
l −m2 cos θl

)
, (462)

cos θ∗ =
γ∗l
|p∗|

(√
E2
l −m2 cos θl − β∗lEl

)
, (463)

|p∗|
|pl|

=
sin θl
sin θ∗

. (464)

The Jacobian is now easily evaluated as

∂(E∗,Ω∗)
∂(El,Ωl)

=
|pl|
|p∗|

=
sin θ∗
sin θl

, (465)

to give

d2σ

dEjldΩjl
=

sin θj∗
sin θjl

d2σ

dEj∗dΩj∗
, (466)

in agreement with Joachain [19] (p. 30), Dedrick [23], and Byckling [14] (p. 60). This may be
expressed purely in terms of θjl by using 433 to give θj∗ in terms of θjl.

5.7 Derivation of d cos θjc/d cos θjl

Equation (436) gives

cos θjc =
−αjcγ2

c (1− cos2 θjl)± cos2 θjl
√
D

γ2
c (1− β2

c cos2 θjl)
, (467)

where

D = 1 + γ2
c tan2 θjl(1− α2

jc) . (468)

We will show that

d cos θjc
d cos θjl

=
cos θjl

γ2
c (1− β2

c cos θ2
jl)2

(αjc ±
√
D)2

(±
√
D)

. (469)

To simplify the algebra, make the following definitions.

y ≡ cos θjc , (470)
x ≡ cos θjl , (471)
γc ≡ γ , (472)
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βc ≡ β , (473)
αjc ≡ α , (474)

y′ ≡ dy

dx
. (475)

We have

y ≡ f

g
=
−αγ2(1− x2)± x2

√
D

γ2(1− β2x2)
, (476)

where

f ≡ −αγ2(1− x2)± x2
√
D , (477)

g ≡ γ2(1− β2x2) = γ2 − (γ2 − 1)x2 , (478)

where we have used the result γ2β2 = γ2 − 1. Note that we can also write

D = 1 + γ2(1− α2)(
1
x2
− 1) . (479)

Taking derivatives with respect to x, we obtain

D′ = −2γ2

x3
(1− α2) , (480)

f ′ = 2αγ2x±
[
2x
√
D − γ2(1− α2)

x
√
D

]
, (481)

⇒ ±x
√
Df ′ = ±2αγ2x2

√
D + 2x2D − γ2(1− α2) , (482)

⇒ ±x
√
Dgf ′ = ±2αγ4x2

√
D + 2x2γ2D − γ4(1− α2)

∓2αγ4x4
√
D − 2x4γ2D + γ4(1− α2)x2

±2αγ2x4
√
D + 2x4D − γ2(1− α2)x2 , (483)

−(±x
√
Dg′f) = ±2αγ2x2

√
D ∓ 2αγ2x4

√
D − 2x4D

∓2αγ4x2
√
D ± 2αγ4x4

√
D + 2x4γ2D . (484)

Putting this together gives

±x
√
D(gf ′ − g′f) = 2x2γ2D + γ4(1− α2)(x2 − 1)

−γ2(1− α2)x2 ± 2αγ2x2
√
D

= γ2x2(D ± 2α
√
D + α2)

= γ2x2(α±
√
D)2 , (485)

finally giving

y′ =
gf ′ − g′f

g2
=

1
γ4(1− β2x2)2

γ2x2(α±
√
D)2

(±x
√
D)
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=
x(α±

√
D)2

γ2(1− β2x2)2(±
√
D)

. (486)

Translating back into the original variables gives

d cos θjc
d cos θjl

=
cos θjl

γ2
c (1− β2

c cos θ2
jl)2

(αjc ±
√
D)2

(±
√
D)

. (487)

6 Two body final state cross sections

Three dimensional radiation transport codes require differential cross sections in the lab (space-
craft) frame. However, calculations are most easily done in the center of momentum or projectile
frame. The previous section presented general results for Lorentz transforming cross sections,
energies, angle and momenta from one frame to another. Two body final state cross section
transformations are much more complicated than three or more bodies, because the energy and
angle are dependent variables for two body final states. The present section is a culmination
of this paper, in that explicit expressions are written down for Lorentz transforming 2 - body
final state cross sections. The key equations (558) - (561) tell one exactly how to transform a
2 - body final state angular distribution from the center of momentum to the lab (spacecraft)
frame, with all the relevant kinematic factors written in terms of lab variables.

6.1 Differential cross sections

6.1.1 General form of differential cross sections

The differential cross section is

dσ =
S

4F
|M|2(2π)4dΦ2(p1 + p2; p3, p4) . (488)

Using e ≡ (2π)32E, the phase space factor is given by

dΦ2(p1 + p2; p3, p4) = δ4(p1 + p2 − p3 − p4)
d3p3

(2π)32E3

d3p4

(2π)32E4

= δ(E1 + E2 − E′3 − E4)
d3p4

e′3e4

= δ(E1 + E2 − E′3 − E4)
|p4|2

e′3e4
d|p4|dΩ4 , (489)

where it is now understoood that

p3 ≡ p1 + p2 − p4 , (490)

so that in the above equation, we have (with |p4|2 ≡ p2
4)

E4 =
√

p2
4 +m2

4 , (491)
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E′3 ≡
√

(p1 + p2 − p4)2 +m2
3 . (492)

To eliminate the δ function, we could now use the Ho-Kim phase space method discussed pre-
viously [10]. Simplify the above expression by writing

d|p4| =
d|p4|

d(E′3 + E4)
d(E′3 + E4) , (493)

so that d(E′3 +E4) will kill the δ(E1 +E2 −E′3 −E4) term. It is actually d(E′3+E4)
d|p4| that we will

evaluate. We use d(E′3 + E4) rather than just dE3 because both E′3 and E4 have the term |p4|
present in them. The phase space factor then becomes

dΦ2(p1 + p2; p3, p4) =
|p4|2

e′3e4

d|p4|
d(E′3 + E4)

dΩ4 , (in general), (494)

which is identical in form to equation (73), because both phase space factors have a 2 - body
final state. (The latter equation is obtained from the former via the substitutions 1 → 4 and
2→ 3.) The Griffiths phase space method, follows exactly as discussed previously and will give
the same result. The differential cross section now becomes

dσ

dΩ4
=

S
64π2F

|M|2 |p4|2

E′3E4

d|p4|
d(E′3 + E4)

, (in general), (495)

which agrees with Ho-Kim [10] (equation 4.57).

6.1.2 Angular distribution in cm frame

We now evaluate this expression by evaluating d|p4|
d(E′3+E4) in a particular frame. Evaluate the

differential cross section in the cm frame, where p1 + p2 = 0 and E′3 =
√
|p4|2 +m2

3. We obtain

[
d(E′3 + E4)

d|p4|

]
c

= |p4|
E′3 + E4

E′3E4
. (496)

Also,

dΦ2(p1 + p2; p3, p4)c =
|p4|2

e′3e4

d|p4|
d(E′3 + E4)

dΩ4c

=
|p4|
e′3e4

E′3E4

E′3 + E4
dΩ4c

=
|p4|

4(2π)6 (E′3 + E4)
dΩ4c , (497)
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which compares to equation (82). The differential cross section is therefore

dσ =
S

4F
|M|2(2π)4dΦ2(p1 + p2; p3, p4) =

S
64π2F

|p4|
E′3 + E4

|M|2 dΩ4c , (498)

giving

dσ

dΩ4c
=

S
64π2F

|p4|
E′3 + E4

|M|2 . (499)

Now, use (21) for F with
√
s = E′3 +E4. The angular distribution in the cm frame is, therefore

(with |p4c| = |p3c| ≡ |pfc| and |p2c| = |p1c| ≡ |pic| in the cm frame),

dσ

dΩ4c
=

S
64π2s

∣∣∣∣pfcpic

∣∣∣∣ |M|2
=

S
64π2s

√
λ34

λ12
|M|2 , (500)

where we have used the following results,

|pfc| =

√
λ34

4s
, and |pic| =

√
λ12

4s
. (501)

The latter expression for dσ
dΩ4c

is far superior to the former, because the latter is written in terms
of the single variable s, whereas the former appears to contain two independent variables pic
and pfc. This agrees with references [7] (p. 100), [14] (p. 80), [10] (p. 100), [2] (p. 200). A
similar formula for dσ

dΩ3c
is obtained by interchanging 3↔ 4 to give ([14] p. 80)

dσ

dΩ3c
=

dσ

dΩ4c
. (502)

The angle Ω3 is understood to be Ω13, the angle of particle 3 with respect to particle 1. Written
explicitly, the above formula becomes

dσ

dΩ13c
=

dσ

dΩ24c
. (503)

When scalar products are encountered such as p2 ·p4 = |p4||p2| cos θ24, it becomes necessary to
specify relative angles such as θ24.

6.1.3 t distribution

The above results are often written in terms of the Mandelstam invariant variable t defined as

t ≡ (p1 − p3)2 = (p2 − p4)2

= m2
2 − 2E2E4 + 2p2 · p4 +m2

4

69



= m2
4 +m2

2 − 2
√

p2
4 +m2

4

√
p2

2 +m2
2 + 2|p4||p2| cos θ24 , (504)

giving

dt = 2|p2||p4|d cos θ24 , (505)

where θ24 is the angle between p2 and p4. Because of a minus sign ambiguity to come later, we
need now to thoroughly establish our convention for a solid angle. Thus, we now present some
elementary considerations. The solid angle is

dΩ = sin θdθdφ
= −d cos θdφ
= −2πd cos θ . (506)

Note that, when integrated this gives the total solid angle. This works as follows.∫ π

0
sin θdθ = [− cos θ]π0 = −[cos θ]θ=πθ=0 = −(−1− 1) = 2 , (507)

or equivalently,∫ π

0
sin θdθ = −

∫ −1

1
d cos θ = −[cos θ]cos θ=−1

cos θ=1 = −(−1− 1) = 2 . (508)

This gives the total solid angle as∫
dΩ =

∫
dφ

∫
sinθdθ = 2π

∫
sinθdθ

= −2π
∫ −1

1
d cos θ = 4π . (509)

Using equations (505) and (506) gives dt = − 1
π |p2||p4|dΩ. Using

dσ

dt
=

dσ

dΩc

dΩc

dt
= − π

|p2c||p4c|
dσ

dΩc
, (510)

gives [10] (p. 101), with |p2c| = |p1c| ≡ |pic|, and using equation (501) gives

dσ

dt
= − S

64πs
1
|pic|2

|M|2

= − S
16πλ12

|M|2

= − S
64πF 2

|M|2 . (511)

Note that all these equations have a minus sign in front, which does not mean the cross section
is negative, because t takes on negative values. However, most authors, such as de Wit [7] (p.
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100), Ho-Kim [10] (p. 99), and Byckling [14] (p. 81) do not have a minus sign in such formulas.
The reason for this is that most authors write

dΩ = d cos θdφ
= 2πd cos θ , (512)

instead of equation (506). This is explained as follows. Note that the same answer for equation
(508) is obtained with∫ π

0
sin θdθ = +

∫ 1

−1
d cos θ = [cos θ]cos θ=1

cos θ=−1 = (1−−1) = 2 . (513)

In other words, we can change the definition of solid angle to

dΩ ≡ +2πd cos θ , (514)

provided that it is understood that the limits of integration are reversed, as in equation (513).
This gives the same solid angle as obtained in equation (509) as∫

dΩ = +2π
∫ 1

−1
d(cos θ) = 4π . (515)

With this convention, the t integration also changes. Previously, with dΩ = −2πd cos θ, the t
integration would have been

∫ tπ
t0
dt where t0 ≡ t(θ = 0) and tπ ≡ t(θ = π). However, with our

new convention, the t integration must be

dΩ = +2πd cos θ =>
∫ t0

tπ
dt . (516)

This will be important when we calculate the total cross section,

σ =
∫ t0

tπ

dσ

dt
dt . (517)

However, because s+ t+u =
∑
im

2
i , then u has opposite behaviour to t. Thus, if u integrations

are being performed, then it must be

σ =
∫ uπ

u0

dσ

du
du . (518)

With the above considerations, equations (511) then become

dσ

dt
=

S
64πs

1
|pic|2

|M|2

=
S

16πλ12
|M|2
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=
S

64πF 2
|M|2 , (519)

where by (21)

λ12 = (s−m2
1 −m2

2)2 − 4m2
1m

2
2 = 4F 2 . (520)

The above expressions for dσ
dt are valid in any frame because σ and t are invariant. They agree

with references [1] (equation 34.30) and [14] (p. 81) and [10] (equation 4.62). The invariant
amplitude often consists of direct (t-channel) and exchange (u-channel) terms,

M≡Md +Me . (521)

Cross sections, however, always involve the amplitude squared |M|2, and a new interference
term arises which is the cross term in the square. Thus,

|M|2 ≡ |Md|2 + |Me|2 + |Mi|2 , (522)

where

|Mi|2 ≡ 2MdMe . (523)

Thus, the cross section can be written as a direct, exchange and interference cross section,

dσd
dt

=
S

16πλ12
|Md|2 , (524)

dσe
dt

=
S

16πλ12
|Me|2 , (525)

dσi
dt

=
S

16πλ12
|Mi|2 =

S
16πλ12

2MdMe . (526)

The total cross section will be

σ =
∫ t0

tπ

dσ

dt
dt

= σd + σe + σi =
∫ t0

tπ

dσd
dt

dt+
∫ t0

tπ

dσe
dt
dt+

∫ t0

tπ

dσi
dt
dt . (527)

When performing integrations to obtain total cross sections, one finds the analysis is much
simpler if the direct, exchange and interference terms are treated separately. Note that equation
(3.18) in reference [15] and equation (6) in reference [13] are incorrect; the factor 4 should
not appear in the denominator. In the notations of those references, the correct equation is
dσ
dt = 1

64π |M|
2 1
I2

.
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6.1.4 Cross section units

We consider equation (519) to specifically show how cross section units can be checked. The
units of the formula (519) for dσ/dt are verified as follows. On the left hand side, σ has units
of mb or GeV−2. The Mandelstam variable, t, has units of GeV2. Thus, dσ/dt has units of
mb/GeV2 or GeV−4. The invariant amplitude will be of the form M = g2

t−m2 (for the direct
term), where t ≡ (p1 − p3)2 and g is the coupling constant, and m is the mass of the exchange
particle. On the right hand side of (519), the coupling g2 has units of GeV2 (in scalar theory),
thus M is dimensionless. λ has units of GeV4. Thus, the right hand side has units of GeV−4,
matching the left hand side.

6.1.5 Relation between dσ
dΩc

and dσ
dt

The differential cross section dσ
dt can be thought of as an angular distribution because t is directly

related to the scattering angle cos θ. Re-writing equation (504) gives

t−m2
2 −m2

4 + 2E2E4

2|p2||p4|
= cos θ24 . (528)

In the cm frame, p1 + p2 = 0 = p3 + p4 and |p1| = |p2| ≡ |pic| and |p3| = |p4| ≡ |pfc|, which
gives equation (504) as

t ≡ (p4 − p2)2

= m2
4 +m2

2 − 2
√

p2
fc +m2

4

√
p2
ic +m2

2 + 2|pfc||pic| cos θ24c , (529)

or

t = m2
2 +m2

4 +
1
2s

[
−
√

(λ12 + 4sm2
2)(λ34 + 4sm2

4) +
√
λ12λ34 cos θ24c

]
, (530)

using equation (501). Notice that when m1 = m2 = m3 = m4, this reduces to |pfc| = |pic|
which is used to obtain equation (6.51) in Griffiths [2]. This can also be written [16] (p. 8), [19]
(p. 31), [14] (pp. 79, 80),

cos θ13c =
s(t− u) + (m2

1 −m2
2)(m2

3 −m2
4)√

λ12λ34
. (531)

Byckling [14] (p. 80) and Leon [12] (p. 16) also write equivalent expressions for the lab frame
angle. Byckling explains how to convert these expressions for the s, t, u channels. Using (514)
and (530), we obtain

dt =
√
λ12λ34

2s
d cos θ =

√
λ12λ34

4πs
dΩ . (532)
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dσ
dΩc

is written directly in terms of the angular distribution dσ
dt . Using equations (530) and (532),

we obtain [19] (p. 40)

dσ

dΩ24c
=
√
λ12λ34

4πs
dσ

dt
, (533)

with t given by equation (530), where θ24 ≡ θ4. Since θ13 = θ24 in the cm frame, dθ24/dθ13 = 1,
therefore

dσ

dΩ13
=

dσ

dΩ24

dΩ24

dΩ13
=

dσ

dΩ24
, (534)

and

dσ

dΩ13c
=
√
λ12λ34

4πs
dσ

dt
. (535)

Now, t can also be written as

t ≡ (p3 − p1)2

= m2
3 +m2

1 − 2
√

p2
fc +m2

3

√
p2
ic +m2

1 + 2|pfc||pic| cos θ13c

= m2
1 +m2

3 +
1
2s

[
−
√

(λ12 + 4sm2
1)(λ34 + 4sm2

3) +
√
λ12λ34 cos θ13c

]
. (536)

Just as θ has a minimum and maximum value (i.e. 0 and π), so too does t. The minimum and
maximum values are denoted

t0 ≡ t(θc = 0) , (537)

and

tπ ≡ t(θc = π) . (538)

These are given by [1] (p. 188), [10] (p. 101)

t0(tπ) = (E1c − E3c)2 − (|p1c| ∓ |p3c|)2

=

[
m2

1 −m2
2 −m2

3 +m2
4√

4s

]2

− (|p1c| ∓ |p3c|)2

=
1
4s

[
(m2

1 −m2
2 −m2

3 +m2
4)2 − (

√
λ12 ∓

√
λ34)2

]
, (539)

where the ∓ notation means that t0 has the − sign and tπ has the + sign, i.e. t0 = (E1c −
E3c)2 − (|p1c| − |p3c|)2 and tπ = (E1c − E3c)2 − (|p1c|+ |p3c|)2. Equation (539) is obtained by
substituting 0 and π into equation (536). It is also derived in section 4.4. In plotting an angular
distribution, cos θ must not exceed the maximum and minimum values. Similarly, when plotting
the cross section dσ

dt , with t on the horizontal axis, then t must not exceed t0 or tπ.
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6.1.6 Lab frame spectral distribution

In the following derivation, T4l is the kinetic energy of particle number 4. The Mandelstam
invariant t is

t ≡ (p1 − p3)2 = (p2 − p4)2 ,

= m2
1 − 2E1E3 + 2p1 · p3 +m2

3 ,

= m2
2 − 2E2E4 + 2p2 · p4 +m2

4 . (540)

Previously, we used the 1, 3 variables, but now it proves convenient to use the 2, 4 variables
because the lab (target) frame is defined by p2 ≡ 0 giving E2l = m2 and we obtain

t = m2
2 − 2m2E4l +m2

4 , (541)

or, since E4 = T4 +m4,

t = (m2 −m4)2 − 2m2T4l , (542)

which gives

dt = −2m2 dT4l . (543)

de Wit [7] (p. 101) chooses particle number 4 as the target recoil particle. Notice that there
is no θ24l appearing in the above two expressions. This makes sense because in the lab frame
particle 2 is at rest and so it is impossible to have an angle defined relative to particle 2. Using
equations (542) and (543), we obtain the lab frame spectral distribution of particle 4 ([7] (p.
101)

dσ

dT4l
=

dσ

dE4l
= −2m2

dσ

dt
, (544)

with t given by equation (542). We also have by (533)

dσ

dT4l
= −2m2

dσ

dt

=
8πm2s√
λ12λ34

dσ

dΩ4c

=
2πm2

|pic||pfc|
dσ

dΩ4c
. (545)

The spectral distribution of particle 3 is now easily obtained. Conservation of energy gives

E1l + E2l = E3l + E4l

= constant. (546)
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Thus,

dE3l = −dE4l , (547)
dT3l = −dT4l . (548)

Alternatively, we could have substituted energy conservation in the lab frame, E4 = E1+m2−E3

into equation (542), to obtain

t = m2
4 −m2

2 + 2m2(T3l +m3 − E1l) , (549)

giving

dt = 2m2dT3l . (550)

Thus,

dσ

dT3l
=

dσ

dE3l
= +2m2

dσ

dt
, (551)

with t given by equation (549).

6.1.7 Lab frame angular distribution

To obtain the angular distribution in terms of dσ
dt , solve (256) for cos θ13l and differentiate, as in

cos θ13l =
E3l(E1l +m2)− 1

2(m2
1 +m2

2 + 2m2E1l +m2
3 −m2

4)
|p1l||p3l|

(552)

d(cos θ13l)
dE3l

=
d(cos θ13l)
dT3l

=
E3l(m2

1 +m2
2 +m2

3 −m2
4 + 2m2E1l)− 2m2

3(E1l +m2)

2
√
E2

1l −m2
1 (E2

3l −m2
3)3/2

(lab frame) , (553)

which, upon substitution into equation (551), and with the implied integral over dφ, dΩ =
2π d(cos θ), gives

dσ

dΩ3l
=

m2

π

∣∣∣∣∣∣ |p1l||p3l|
E1l +m2 − |p1l|

|p3l|E3l cos θ13l

∣∣∣∣∣∣ dσdt
=

m2

π

∣∣∣∣∣∣
2
√
E2

1l −m2
1 (E2

3l −m2
3)3/2

E3l(m2
1 +m2

2 +m2
3 −m2

4 + 2E1lm2)− 2m2
3(E1l +m2)

∣∣∣∣∣∣ dσdt , (554)

with t given by equation (255). In equation (554), the tall absolute value brackets are necessary.
E3l is a function of θ, as shown in equation (265), where in general E3l is a double - valued
function of θ, and dE3l/d(cos θ3l) can have both positive and negative values. However, dσ/dΩ3l

is positive definite, therefore, must depend only on the absolute value of d(cos θ13l)/dE3l. By
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substituting for E3l from (265), (554) is expressed entirely in terms of θ3l. Equation (554) agrees
with Ho-Kim [10] (p. 101) , Byckling [14] (p. 80), and deWit [7] (p. 101). Note that if equation
(553) is substituted into the left hand side of equation (554), a large cancellation of terms on
the left and right hand sides takes place and one is left back with equation (551), again showing
the equivalence of dσ

dT and dσ
dΩ in the lab frame.

We now present an alternative derivation of the above results. We evaluate equation (495)
in the lab frame, defined as p2l ≡ 0. This means evaluating d(E′3l+E4l)

d|p4l| in the lab frame. E′3l
becomes

E′3l =
√

(p1l − p4l)2 +m2
3 =

√
|p1l|2 + |p4l|2 − 2|p1l||p4l| cos θ +m2

3 , (555)

with θ ≡ θ4l. This gives

d(E′3l + E4l)
d|p4l|

= |p4l|
E′3l + E4l(1− α cos θ)

E′3lE4l
, (556)

where

α ≡ |p1l|
|p4l|

. (557)

Thus

dσ

dΩ4l
=

S
64π2F

|p4l|
E′3l + E4l(1− α cos θ)

|M|2 . (558)

Using equation (25) for Fl = m2|p1l| and E1 + E2 = E1l +m2 = E3l + E4l gives

dσ

dΩ4l
=

S
64π2m2

∣∣∣∣p4l

p1l

∣∣∣∣ 1

E1l +m2 −
∣∣∣p1l
p4l

∣∣∣E4l cos θ4l

|M|2 , (559)

which agrees with Byckling [14] (p. 80) and Ho-Kim [10] (equation 4.64). A similar formula for
dσ
dΩ3l

is obtained by interchanging 3↔ 4 to give Byckling [14] (p. 80)

dσ

dΩ3l
=

S
64π2m2

∣∣∣∣p3l

p1l

∣∣∣∣ 1

E1l +m2 −
∣∣∣p1l
p3l

∣∣∣E3l cos θ3l

|M|2 . (560)

Upon combining (535) with (554), one obtains

dσ

dΩ3l
=

4m2s√
λ12λ34

∣∣∣∣∣∣ |p1l||p3l|
E1l +m2 − |p1l|

|p3l|E3l cos θ13l

∣∣∣∣∣∣ dσ

dΩ13c

=
4m2s√
λ12λ34

∣∣∣∣∣∣
2
√
E2

1l −m2
1 (E2

3l −m2
3)3/2

E3l(m2
1 +m2

2 +m2
3 −m2

4 + 2E1lm2)− 2m2
3(E1l +m2)

∣∣∣∣∣∣ dσ

dΩ13c
, (561)

77



which provides a way of transforming a cm frame angular distribution to a lab frame distribution.
This provides an alternative to equation (450). Performing a numerical evaluation of equations
(450) and (561), which must give the same answer, enables one to perform an excellent test of
these results.

7 Conclusions

This paper has provided a thorough discussion of the transformation of 3 - dimensional differ-
ential cross sections from the projectile or center of momentum frames to the lab frame. This is
important because transport codes require all cross sections in the lab frame. Several important
issues, such as the use of double valued and infinite functions have been discussed extensively.
Such a detailed and comprehensive treatment does not appear in previous literature. Special
attention has been paid to writing differential cross sections entirely in terms of lab variables,
because these are used in 3 - dimensional radiation transport codes. 2 - body final state cross
sections are much more complicated than 3 - body final states, because the energy and angle are
dependent variables. Equations (558) - (561) tell one exactly how to transform a 2 - body final
state angular distribution from the center of momentum frame to the lab (spacecraft) frame,
with all the relevant kinematic factors written in terms of lab variables. These results will be
very useful in enhancing space radiation transport codes, such as HZETRN, to be capable of
fully 3 - dimensional transport.
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