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Abstract
The laboratory (lab) frame angular distribution derived in two-body scattering
theory exhibits a singularity at the maximum lab scattering angle. The
singularity appears in the kinematic factor that transforms the centre of
momentum (cm) angular distribution to the lab angular distribution. We show
that it is caused in the transformation by the funnelling of a range of cm
scattering angles into a much smaller range of lab angles. Correct treatment of
this singularity is important when transforming angular distributions from the
cm or projectile frame to the lab frame.

1. Introduction

The transformation of angular distributions, i.e. angular differential cross sections, from one
reference frame to another, is essential in a variety of applications. For example, angular
differential cross sections are often more easily calculated in the centre of momentum (cm)
frame, but need to be transformed to the laboratory (lab) frame of reference in order to compare
to measurements made in the lab frame. Another application involves radiation transport codes,
which require cross sections expressed in the lab frame. When one transforms the angular
distribution for two-body scattering from the cm to the lab frame, a singularity arises in the
lab frame angular distribution. Given the fundamental importance of this phenomenon, it is
surprising that this is only sparsely discussed in the literature. The aim of this paper is to
present a thorough discussion of the methods involved in dealing with this singularity.

The simplest form of scattering involves two-body interactions with the production of
two final state particles. In this paper, we limit our discussion to two-body interactions where
two particles, labelled 1 and 2, interact to produce final state particles 3 and 4, described
symbolically by 1 + 2 → 3 + 4. Three commonly used reference frames are the projectile,
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centre of momentum (cm) and target frames. The target frame is often deemed the laboratory
(lab) frame, since the target is usually stationary in the laboratory.

In collider beam experiments, involving particles of equal but opposite momentum, the
experiment is performed and analysed expeditiously in the cm frame. In experiments involving
a particle beam and a stationary target, the lab frame is a natural choice.

The notation used throughout this paper is as follows. Variables in the lab frame are given
a subscript l, as in xl , and variables in the cm frame are given a subscript c, as in xc.

In the cm frame, the energy of a final state particle is constant over all possible cm
scattering angles, 0 � θc � π . This is not so in the lab frame, where the energy varies with
the lab angle, and where particles of two different energies can scatter into the same angle
[1, p 402]. Another feature found in the lab frame is the narrowed range of a scattering angle
when the scattered particle masses differ [2, p 100]. For the heavier particle, the range is
bounded by the maximum scattering angle θl,max < π/2, which is determined by the masses
and the energy of interaction. We focus on another feature that accompanies the appearance
of the maximum scattering angle, namely a singularity in the lab angular distribution located
at θl,max [2, p 100].

The transformation of angular distributions from the cm to the lab frame is important
in illustrating the use of Lorentz and Galilean kinematic transformations. Subsequently, it
is discussed in many references concerning classical and quantum mechanics, and nuclear
and particle physics [2–30]. The singularity appears in the kinematic factor that arises in
the transformation of the distribution from the cm frame to the lab frame, and appears for
both the non-relativistic and relativistic cases. It is therefore surprising that the singularity
receives no mention in standard discussions of cm to lab transformation of angular differential
cross sections [2–30]. The only discussion that we could find in the physics literature was
a brief mention in [2, p 100], [3, p 28] and [4, pp 133–4]. A complete treatment of the
problem is not given. The purpose of the present paper is to provide such a treatment, which
is basic to methods in nuclear and particle physics. We derive the lab angular distribution
and demonstrate the presence of the singularity. We relate the existence of the singularity to
the nature of the mapping of cm to lab angles. We characterize the singularity in an inelastic
scattering process, and we discuss its signature as seen by a macroscopic detector.

The results presented in this paper will be of use to a broad audience. Advanced
undergraduates and beginning graduate students will find a thorough, unified treatment of both
non-relativistic and relativistic transformations required in calculating angular distributions
in both the centre of momentum and lab frames. They will also be introduced to the use of
Mandelstam variables. The teacher and general physicist will find a unified treatment of the
singularities involved in both the non-relativistic and relativistic transformations of angular
distributions. The teacher needs to know about this if these singularities are ‘discovered’
by sufficiently advanced students. The specialist will find these results useful in practical
calculations, such as when lab angular distributions are required by radiation transport codes
that require correct treatment of the singularities. The singularity results presented here are
not widely available in the literature.

The relevance to physics education is the following. Transformation of the non-relativistic
angular distribution from the centre of momentum to the lab frame is a standard lesson in
undergraduate and graduate classical and quantum mechanics courses. We provide a thorough
discussion of the singularity that is involved in this transformation, which is not widely
discussed. Advanced undergraduate and beginning graduate students, as well as teachers, will
naturally want to know about the relativistic extension of these results. We discuss the entire
problem from the relativistic viewpoint, showing clearly how the relativistic features compare
to the non-relativistic features. Such a unified treatment is pedagogically useful.
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Figure 1. dN is the number of particles incident on dσ and scattered into d� per unit time.
Adapted from [5].

2. Angular distributions

Following [5], the angular distribution, or angular differential scattering cross section dσ/d�,
is defined as

dσ

d�
= 1

I

dN

d�
(1)

d� = sin θ dθ dφ, (2)

where dN is the number of particles incident upon dσ , the differential element of cross section
(figure 1), and scattered into solid angle d�, per unit time. The solid angle d� is measured
with respect to the origin of the chosen reference frame. The beam intensity I is the number
of incident particles per unit area per unit time. The angles θ and φ define the scattering
direction; θ is the angle between the initial and final lines of motion of the scattered particle
and φ is the azimuthal angle about the initial line of motion. From figure 1, the differential
element of area dσ is the same in both the cm and the lab frames, so that

dσc = dσ

d�c

d�c = dσl = dσ

d�l

d�l, (3)

and by equation (2), with equivalence of the azimuthal angles, dφc = dφl , we have

dσ

d�l

=
∣∣∣∣d(cos θc)

d(cos θl)

∣∣∣∣ dσ

d�c

. (4)

The absolute value brackets ensure that dσ/d�l is positive definite. Expressions for the
kinematic factor,

f ≡
∣∣∣∣d(cos θc)

d(cos θl)

∣∣∣∣ , (5)

can be derived for both non-relativistic and relativistic scattering, once the relation between the
cm and lab scattering angles, θc and θl , is known. This is done in the following two sections.

3. Non-relativistic scattering

For simplicity, consider elastic scattering in which the colliding particles retain their identities,
so that 1 + 2 → 1 + 2. Let particle 1 be the projectile and particle 2 be the target, and consider
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vl

vcl

vc

l c

Figure 2. Transformation of velocity from the cm to the lab frame. Adapted from [5].

the scattering of the projectile. The relation between the lab and cm scattering angles, θl and θc,
of the scattered particle is obtained by performing a coordinate transformation of the velocity
of the scattered particle from the cm frame to the lab frame. In non-relativistic scattering,
the speeds of the interacting particles are small compared to the speed of light c, in both the
cm and lab frames. Thus, for the speed vc of the scattered particle in the cm frame, we have
vc/c � 1. Furthermore, the speed vcl of the cm frame with respect to the lab frame is small
so that vcl/c � 1. Consequently, the relativistic transformation of velocities reduces to the
non-relativistic (Galilean) transformation,

vl = vc + vcl

1 + (vc · vcl)/c2
� vc + vcl, (6)

where vl is the velocity of the scattered particle in the lab frame. From figure 2, it can be seen
that the Galilean transformation [2] of the velocity of the scattered particle yields

vc cos θc + vcl = vl cos θl (7)

vc sin θc = vl sin θl, (8)

where v is the magnitude of v. Eliminating vl leads to

tan θl = sin θc

α + cos θc

, (9)

with

α ≡ vcl

vc

. (10)

Goldstein [6, equation (3.107)] gives an expression identical to equation (9) with α replaced
by ρ:

ρ = μ

m2

v0

v′
1

, (11)

where μ ≡ m1m2
m1+m2

is the reduced mass and m1 and m2 are the masses of the projectile (scattered)
particle and target particle, respectively. Also, v0 is the relative speed of the particles before
the collision and v′

1 is the speed of the scattered particle in the cm frame. It can be shown that
α = ρ.

As discussed by Jackson [1], the cm angle, θc, can range from 0 to π , but the range of θl

depends on α. Consider the elastic reaction, 1 + 2 → 1 + 2. The quantity α reduces to

α = m1

m2
. (12)
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Figure 3. Relation between lab and cm scattering angles.

Goldstein [6, equation (3.110)] reformulates equation (9) as

cos θl = cos θc + α√
1 + 2α cos θc + α2

. (13)

For α > 1, θl has a maximum θl,max, which is found by differentiating equation (13) with
respect to cos θc, setting the derivative equal to zero, and solving for cos θl , to obtain

θl,max = arcsin

(
1

α

)
. (14)

Solving equation (13) for cos θc in terms of cos θl gives

cos θc = −α sin2 θl ± cos θl

√
1 − α2 sin2 θl (15)

and substituting θl,max from equation (14) gives the corresponding cm angle

θc(at θl,max) = arccos(−1/α). (16)

Equation (15) shows that angle θc is a double-valued function of θl except at θl,max, as seen
in figure 3. Differentiating equation (15), and substituting into equation (4), gives the relation
between the cm and lab distributions as [7]

dσ

d�l

= (1 + α2 + 2α cos θc)
3/2

|1 + α cos θc|
dσ

d�c

. (17)

For m1 > m2 and α > 1, the lab distribution in equation (17) has a singularity at the cm angle

θc,sing = arccos

(−1

α

)
. (18)

This is the angle given by equation (16), which corresponds to the lab angle given by
equation (14), which shows that the singularity occurs at the maximum lab angle:

θl,sing = arcsin

(
1

α

)
≡ θl,max. (19)

The kinematic factor,

f (θc) ≡
∣∣∣∣d(cos θc)

d(cos θl)

∣∣∣∣ = (1 + α2 + 2α cos θc)
3/2

|1 + α cos θc| , (20)

is plotted in figure 4 for α = 4/3, with the singularity prominently displayed at θc � 2.42.
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Figure 4. Kinematic factor f (θc).

3.1. Cause of the singularity

The cause of the singularity is made clear by rewriting equation (5) as

f ≡
∣∣∣∣d(cos θc)

d(cos θl)

∣∣∣∣ =
∣∣∣∣ sin θc

sin θl

dθc

dθl

∣∣∣∣ . (21)

The transformation maps cm angles to lab angles. In equation (21), the range of cm angles, dθc,
maps to the corresponding range of lab angles, dθl . Furthermore, the ratio dθc/dθl increases
without bound as the maximum scattering angle is approached (figure 3):

lim
θl→θl,max

dθc

dθl

= ∞. (22)

As a result, a range of cm scattering angles near θc,sing is funnelled into a much smaller range of
lab angles near θl,max. The funnelling effect grows without bound as the lab angle approaches
the maximum scattering angle θl,max. The funnelling effect is generated by the transformation,
and is due entirely to the relative motion of the cm and lab frames.

Equation (15) may be substituted into equation (20) to give f as a function of the lab
angle. The kinematic factor f (θl) has two solutions corresponding to the two roots of θc. The
two solutions f1 and f2 are plotted in figures 5 and 6, respectively, with the singularity located
at θl,max � 0.85 rad.

Both f1 and f2 share the same lab angle domain 0 � θl � θl,max, but have different cm
angle domains; for f1: 0 � θc � θc,sing and for f2: θc,sing � θc � π . We have shown that the
singularity is present in non-relativistic scattering. The following section treats the relativistic
case.

4. Relativistic scattering

We derive an expression for f , for relativistic scattering, by finding the transformation between
the cm and lab angles. As in the preceding section, f is determined from this transformation.
First, note that the element of cross section dσ (figure 1) is perpendicular to the line of
relative motion of the projectile and target particles and is, therefore, invariant under Lorentz
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Figure 5. Kinematic factor f1(θl).
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Figure 6. Kinematic factor f2(θl).

transformation from the cm to the lab frame. Therefore, equation (4) is valid for the relativistic
case.

In scattering processes where the speeds of the particles are comparable to the speed of
light, a relativistic transformation of velocities is required. The relation between the lab and
cm angles is thus obtained in a manner similar to that of section 3, but in this case, we perform
a Lorentz, rather than Galilean, transformation of the momentum of the scattered particle from
the cm frame to the lab frame. We consider the more general reaction 1 + 2 → 3 + 4, which
can be elastic or inelastic, depending on the identities of the final state particles. Let j specify
either the final state particle 3 or 4,

tan θjl = p⊥j l

p‖j l

= |pjc| sin θjc

γcl(βclEjc + |pjc| cos θjc)
, (23)

where pj l and pjc are the 3-momenta of particle j in the lab and cm frames, respectively, θjl

and θjc are the lab and cm scattering angles, Ejc is the energy of particle j in the cm frame,
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and γcl and βcl are the usual coefficients of the Lorentz boost between the cm and lab frames,
i.e. γcl ≡ 1

/√
1 − β2

cl and βcl ≡ vcl/c. The symbols, ⊥ and ‖, describe the perpendicular and
parallel components of the 3-momentum vectors respectively.

Defining αcl as the relative speed of the cm and lab frames, divided by the speed of particle
j in the cm frame, gives

αjc = βcl

βjc

(24)

βjc = |pjc|
Ejc

, (25)

where E is the total energy. Using the result [8, pp 26, 73]

βcl =
√

λ12

s − m2
1 + m2

2

, (26)

where

λij ≡ (
s − m2

i − m2
j

)2 − 4m2
i m

2
j , (27)

gives

tan θjl = sin θjc

γcl(cos θjc + αjc)
. (28)

See [1, p 402], [4, p 134], [7, p 26], [8, p 42], [31, p 17]. Using the identity 1 +
tan2 θjl = 1/ cos2 θjl , equation (28) may be rewritten as

cos θjl = γcl[cos θjc + αjc]√
γ 2

cl[cos θjc + αjc]2 + sin2 θjc

, (29)

which may be solved for cos θjc in terms of cos θjl , giving

cos θjc = −αjcγ
2
cl(1 − cos2 θjl) ± cos2 θjl

√
D

1 − β2
cl cos2 θjl

, (30)

where

D ≡ 1 + γ 2
cl

(
1 − α2

jc

)1 − cos2 θjl

cos2 θjl

. (31)

Differentiating equation (29) with respect to cos θjc leads to the kinematic factor

f (θjc) =
∣∣∣∣d(cos θjc)

d(cos θjl)

∣∣∣∣
=

[
γ 2

cl(αjc + cos θjc)
2 + sin2 θjc

]3/2

|γcl(1 + αjc cos θjc)| . (32)

At low interaction energies, equations (28) and (32) reduce to equations (9) and (20),
respectively. Substituting cos θjc from equation (30) into equation (32), f can be expressed
in terms of θjl . Equation (30) shows that θjc is a double-valued function of θjl . As in the
non-relativistic case, f (θjl) has two solutions corresponding to the two roots of θjc.

The denominator of equation (32) shows that f has a singularity at the cm angle:

θjc,sing = arccos

(−1

αjc

)
. (33)
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 p2 p1

 p3  p4

-ig-ig
  q

Figure 7. Feynman diagram direct term for reaction 1 + 2 → 3 + 4. The p are the 4-momenta of
particles 1 through 4, q is the 4-momentum of the exchange particle and g is the coupling constant.

Substituting equation (33) into equation (29) gives the lab angle at which the singularity
occurs:

θjl,sing = arcsin
1√

1 + γ 2
cl

(
α2

jc − 1
) . (34)

Equation (33) is identical to equation (18), while equation (34) reduces to equation (14) at low
interaction energies, γcl ∼ 1. The procedure used in section 3 to determine θl,max may also be
applied here to demonstrate the equivalence

θjl,max = θjl,sing. (35)

Plots of the relativistic kinematic factor f are similar to the non-relativistic f , and are not
included here. Having shown that the singularity appears in the relativistic factor f , we
proceed to illustrate the singularity for the case of inelastic scattering.

5. Application to scattering

The singularity is illustrated with plots of the cm and lab angular distributions for inelastic
two-body scattering. The distributions are derived using a scalar (spin zero) quantum field
theory [32], in which scalar particles interact by exchanging a single massive scalar exchange
particle. Using this one boson exchange (OBE) model, the invariant scattering amplitude M
is found. The square of this amplitude |M|2 is proportional to the probability that a particle
will scatter into a given angle or at a given energy. The distributions are thus proportional
to |M|2, and serve to illustrate how the singularity arises in the transformation of a smooth,
finite piece of the cm distribution to the corresponding piece of the lab distribution.

5.1. Lab angular distribution

The interaction of two scalar particles in the reaction, 1 + 2 → 3 + 4, is depicted in
figure 7. Applying the Feynman rules of the model [32] to the diagram leads to the amplitude
M expressed in terms of Mandelstam invariants s, t and u:

M = g13xg24x

t − m2
x

+
g14xg23x

u − m2
x

, (36)

where mx is the mass of the exchange particle, and

s ≡ (p1 + p2)
2, (37)

t ≡ (p1 − p3)
2 = (p2 − p4)

2, (38)

u ≡ (p1 − p4)
2 = (p2 − p3)

2. (39)
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The amplitude contains two terms. The first term is the direct process and is derived from the
diagram in figure 7. The second term is the exchange process and is derived from a similar
diagram, but with particles 3 and 4 exchanged. The amplitude is substituted into the invariant
distribution, dσ/dt [9, p 101]:

dσ

dt
= S

16πλ12
|M|2. (40)

The statistical factor is S = 1, for non-identical final state particles. The cm angular
distribution is given in terms of dσ/dt by [9]

dσ

d�3c

= dσ

dt

dt

d�3c

= dσ

dt

dt

2π d(cos θ3c)
, (41)

treating d�3c as a first-order differential. The factor of 2π in d�3c comes from integration
over dφ with the assumption of azimuthal symmetry. The invariant t is expressed in terms of
the cm scattering angle by

t = (p4 − p2)
2

= m2
4 + m2

2 − 2E4E2 + 2|p4||p2| cos θ4c, (42)

noting that θ3c ≡ θ4c. This expression for t, in combination with equation (41), leads to the
cm angular distribution [7]:

dσ

d�3c

= S
64π2s

√
λ34

λ12

[
g13xg24x

t − m2
x

+
g14xg23x

u − m2
x

]2

, (43)

where gijk are the coupling constants among particles i, j, k, and

t = m2
2 + m2

4 − 1

2s

√(
λ12 + 4sm2

2

)(
λ34 + 4sm2

4

)
+

1

2s

√
λ12λ34 cos θ3c (44)

u =
4∑

i=1

m2
i − s − t . (45)

Finally, applying the angle transformation equation (30) and the relativistic kinematic factor
in equation (32) to equation (43) leads to the lab angular distribution

dσ

d�3l

= 4m2s√
λ12λ34

|p1l||p3l|
|E1l + m2 − |p1l |

|p3l |E3l cos θ13l|
dσ

d�13c

, (46)

where

|pj l| ≡
√

E2
j l − m2

j . (47)

In this form, the lab angular distribution is given in terms of E3l , the energy of particle 3 in the
lab frame. For computational purposes, both E3l and dσ/d�13c, the latter of which contains
t, are written as functions of θ3l and the interaction energy E1l by using

s = m2
1 + m2

2 + 2E1m2 (48)

t = m2
4 − m2

2 + 2m2(E3l − E1l ), (49)

and

E3l = ab

D
±

√
E2

1l − m2
1 cos(θ3l )

D

×
√

a2 − m2
3

[
b2 − (

E2
1l − m2

1

)
cos2(θ3l )

]
(50)
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with

D ≡ b2 − (
E2

1l − m2
1

)
cos2(θ3l ) (51)

a ≡ s + m2
3 − m2

4

2
(52)

b ≡ E1l + m2. (53)

Equation (50) shows that, in general, for a single value of lab angle θ3l , the energy
E3l has two roots. These roots correspond to the two roots of the cm angle θ3c given by
equation (30). The two roots of E3l are plotted together in figure 8, forming respectively the
upper and lower parts of the curve, and joining at θ3l,max � 0.64 rad. This plot corresponds
to the inelastic reaction described in section 5.2. The two values of E3l signify that particles
of two different energies are scattered into the angle θ3l . The presence of two energy roots
requires that the lab angular distribution be expressed as the sum of two terms, each a function
of one of the energy roots:

dσ

d�3l

= dσ

d�3l

(E3l,root1) +
dσ

d�3l

(E3l,root2). (54)

We have determined expressions for the cm and lab angular distributions. In the following
section, these are plotted for a particular inelastic reaction defined by the masses of the
interacting particles and the energy of interaction.

5.2. Analysis of inelastic scattering

The reaction, 1 + 2 → 3 + 4, describes an inelastic scattering process when one or both of the
final state particles differ from the initial state particles. We define our inelastic process by
setting m1 = m2 = m4, and m3/m1 = 4/3. Particle 1 is treated as the projectile, while particle
2 is the stationary target. Initial state particles 1 and 2 are identical. We set the mass of the
exchange particle by mx/m1 = 1/7. The energy of the projectile E1l is the interaction energy,
and we set it to E1l = 3m1, sufficient to produce the final state particles. For correspondence
to a real process, the mass ratios are chosen to be approximately the same as the mass ratios
occurring in the well-known reaction P + P → P + � modelled as a one pion exchange
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Figure 9. Angular distribution in the cm frame.
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Figure 10. Angular distribution in the lab frame.

process, in which two protons (P) exchange a pion to produce a delta baryon (�). In this
process, the mass ratios are m�/mP � 4/3 and mπ/mP � 1/7, where m� is the resonance
mass, mP is the proton mass and mπ is the mass of the exchange pion.

The cm and lab distributions are plotted in figures 9 and 10, respectively. The plots are
normalized to a combined coupling factor G = g2

13xg
2
24x = g2

14xg
2
23x . The ‘horns’ in the cm

angular distribution located at θ3c = 0 and θ3c = π are finite, demonstrated by evaluating
t (θ3c = 0) and t (θ3c = π) using equation (44), and substituting into equation (43). Both
horns map to the single finite horn located at θ3l = 0 in the lab angular distribution. These
horns arise from preferential forward scattering, and they are distinguished from the infinite
horn at θ3l,max � 0.64 rad, which arises from the aforementioned funnelling effect near θ3l,max

(see subsection 3.1). The corresponding cm angle is θ3c,sing � 2.38 rad. Note how the smooth,
finite portion of the cm angular distribution around θ3c,sing maps to the infinite horn in the lab
angular distribution.

For the inelastic scattering process considered in this section, the total cross section σ

is finite, which is demonstrated most directly by integrating equation (40) over the allowed
range of t, with u defined in terms of t in equation (45),

σ =
∫ t (θc=π)

t (θc=0)

dσ

dt
dt. (55)



Singularity in the laboratory frame angular distribution derived in two-body scattering theory 415

0 0.1 0.2 0.3 0.4 0.5 0.6

3l

0

0.2

0.4

0.6

0.8

1

1.2

Det
G
b
G

θ

μ

Figure 11. Detector partial cross section.

The total cross section may also be found by integrating dσ/d�:

σ =
∫ φ=2π

φ=0

∫ θl,max

0

dσ

d�l

d�l. (56)

The total cross section has units of area, and represents the cross sectional area of the target
particle as seen by the projectile particle. This cross sectional area is perpendicular to the line of
relative motion of the projectile and target particles, and it is, therefore, invariant under Lorentz
transformation from the cm frame to the lab frame. The two integrals in equations (55) and
(56) must therefore be equivalent. The above integration of the lab angular distribution dσ/d�l

over the range of lab scattering angles involves integration over the singularity. Since the total
cross section is finite, integration over the singularity can make only a finite contribution to
the total cross section, and it can make only a finite contribution to the partial cross section
determined by integration over a small range of angles about θl,max. Such a small range of
angles is subtended by a macroscopic detector. An idealized detector of infinitesimal angular
width ‘sees’ the bare singularity, but a macroscopic detector of finite width sees a finite bump
in the angular distribution in the vicinity of θl,max.

The ‘detector’ plot in figure 11 shows the partial cross section measured by a ring-shaped
detector (the ring labelled d� in figure 1) of a varying solid angle �� = 2π sin θ3l�θ3l , but
fixed width �θ3l = 17.45 mrad = 1◦, as the detector is positioned over a continuous range of
angles 0 < θ3l < θ3l,max. The singularity in the lab angular distribution (figure 10) produces
the sharp peak in the detector cross section (figure 11) near θl,max.

6. Conclusions

Two-body scattering theory gives expressions for the cm and lab angular distributions. For
the inelastic reaction considered, the cm angular distribution has sharp but finite peaks at the
extremities of the scattering range θc = 0 and θc = π , and is smooth throughout, having
no singularities over the range 0 � θc � π . The lab angular distribution is related to the
cm angular distribution by a Galilean or Lorentz transformation. This paper highlights the
transformation by demonstrating that a singularity resides in the kinematic factor generated by
the transformation from the cm to lab frame. This factor multiplies the cm angular distribution
to produce the lab angular distribution. The singularity is caused by the funnelling of a range of
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cm scattering angles to a much smaller range of lab angles. The funnelling effect grows as the
lab angle approaches the maximum scattering angle θl,max. In the limit as θl approaches θl,max,
the ratio of the ranges goes to infinity. The singularity is seen to be a purely kinematic effect,
present even for cases of low relative speeds of the interacting particles or, equivalently, cases
of non-relativistic motion between the cm and lab frames. The funnelling effect highlights
how the angular distribution is shaped by relative motion.

Transformation of angular distributions from the centre of momentum to the lab frame is
often studied at the non-relativistic level by undergraduate and graduate students in courses on
classical and quantum mechanics. The detailed study of the singularity is often not considered.
However, advanced students may well come across the singularity if they pursue the problem
fully. Naturally, both students and teachers alike will want to know about the relativistic
extension, which our paper provides in conjunction with the non-relativistic treatment.

Acknowledgments

John Norbury thanks Professor J D Jackson for very helpful correspondence. The authors also
thank Rachel Nasto and Ryan Norman for verifying some results.

References

[1] Jackson J D 1972 Classical Electrodynamics 1st edn (New York: Wiley)
[2] Schiff L I 1949 Quantum Mechanics 1st edn (New York: McGraw-Hill)
[3] Baldin A M, Goldanskii V I and Rozental I L 1961 Kinematics of Nuclear Reactions (Oxford: Oxford University

Press)
[4] Newton R G 1982 Scattering Theory of Waves and Particles 2nd edn (New York: Springer)
[5] Marion J B 1970 Classical Dynamics of Particles and Systems 2nd edn (New York: Academic)
[6] Goldstein H, Poole C and Safko J 2002 Classical Mechanics 3rd edn (San Francisco: Addison-Wesley)
[7] Joachain C J 1983 Quantum Collision Theory (Amsterdam: North-Holland)
[8] Byckling E and Kajantie K 1973 Particle Kinematics (New York: Wiley)
[9] Ho-Kim Q and Xuan Yem P 1998 Elementary Particles and their Interactions (New York: Springer)

[10] Galindo A and Pascual P 1990 Quantum Mechanics II (New York: Springer)
[11] Das A and Melissinos A C 1986 Quantum Mechanics (New York: Gordon and Breach)
[12] Mandl F 1957 Quantum Mechanics (London: Butterworths Scientific Publications)
[13] Park D 1964 Introduction to Quantum Mechanics (New York: McGraw-Hill)
[14] Desloge E 1989 Classical Mechanics vol 1 (Malabar, FL: Krieger)
[15] Bohm D 1951 Quantum Theory (New York: Prentice-Hall)
[16] Farina J 1973 Quantum Theory of Scattering Processes (Oxford: Pergamon)
[17] Sitenko A 1971 Lectures in Scattering Theory (Oxford: Pergamon)
[18] Barger V and Kline D B 1969 Phenomenological Theories of High Energy Scattering (New York: Benjamin)
[19] Dedrick K G 1962 Kinematics of high energy particles Rev. Mod. Phys. 34 429–42
[20] Chow T L 1995 Classical Mechanics (New York: Wiley)
[21] Hagedorn R 1963 Relativistic Kinematics (New York: Benjamin)
[22] Krane K S 1988 Introductory Nuclear Physics (New York: Wiley)
[23] Pilkuhn H M 1979 Relativistic Particle Physics (New York: Springer)
[24] Mathews P M and Venkatesan K 1978 A Textbook of Quantum Mechanics (New York: McGraw-Hill)
[25] Rossberg K 1983 A First Course in Analytical Mechanics (New York: Wiley)
[26] Barford N C 1973 Mechanics (New York: Wiley)
[27] Kibble T W B 1973 Classical Mechanics 2nd edn (New York: Wiley)
[28] Taylor J R 1972 Scattering Theory (New York: Wiley)
[29] Cheng D C and ONeill G K 1979 Elementary Particle Physics (Reading, MA: Addison-Wesley)
[30] Segre E 1977 Nuclei and Particles 2nd edn (Reading, MA: Benjamin-Cummings)
[31] Leon M 1973 Particle Physics: An Introduction (New York: Academic)
[32] Griffiths D J 1987 Introduction to Elementary Particles (New York: Wiley)

http://dx.doi.org/10.1103/RevModPhys.34.429

	1. Introduction
	2. Angular distributions
	3. Non-relativistic scattering
	3.1. Cause of the singularity

	4. Relativistic scattering
	5. Application to scattering
	5.1. Lab angular distribution
	5.2. Analysis of inelastic scattering

	6. Conclusions
	Acknowledgments
	References

